Abstract: We consider truncated Whittaker-Kotel'nikov-Shannon operators also known as sinc-operators. Conditions on continuous functions $f$ that guarantee uniform convergence of sinc-operators to such functions are obtained. It is shown that if a function is absolutely continuous, satisfies Dini-Lipschitz condition and
vanishes at the end of the segment \([0,\pi]\), then sinc-operators converge uniformly to this function. In the case when \(f(0)\) or \(f(\pi)\) is not zero, sinc-operators lose the property of uniform convergence. For example, it is well known that sinc-operators have no uniform convergence to function identically equal to 1. In connection with this we introduce modified sinc-operators that possess a uniform convergence property for arbitrary absolutely continuous function, satisfying Dini-Lipschitz condition.
Keywords: nonlinear system of integral equations, Hammerstein--Voltera type operator, iteration, monotonisity, primitive matrix, summerable solution
1. Whittaker E. T. On the Functions which are Represented by
Expansions of the Interpolation Theory. Proc. Roy. Soc. Edinburgh.
1915, vol. 35, pp. 181-194.
2. Kotelnikov V. A. On the Transmission Capacity of ’Ether’ and Wire
in Electric Communications. Phys. Usp., 2006, vol. 49, pp. 736–744.
DOI: 10.1070/PU2006v049n07ABEH006160.
3. Shannon C. E. A Mathematical Theory of Communication, Bell System
Tech. J., 1948, vol. 27, pp. 379-423, 623-656. MR 10, 133
4. Schoenberg I. J. Cardinal Interpolation and Spline Functions,
Approximation Theory, 1969, vol. 2, pp. 167-206.
5. McNamee J.,Stenger F.,Whitney E. L. Whittaker's Cardinal Function
in Retrospect, Mathematics of Computation, 1971, vol. 25, no. 113,
pp. 141-154.
6. Stenger F. An Analytic Function which is an Approximate
Characteristic Function, SIAM J. Appl.Math., 1975, vol. 12, pp.
239-254.
7. Stenger F. Approximations via the Whittaker Cardinal Function, J.
Approx. Theory, 1976, vol. 17, pp. 222-240.
8. Higgins J. R. Five Short Stories about the Cardinal Series, Bull.
Amer. Math. Soc., 1985, vol. 12, p. 45-89.
10. Lund J.,Kenneth L. B. Sinc Methods for Quadrature and
Differential Equations, Philadelphia: Society for Industrial and
Applied Mathematics, 1992. 304 p.
11. Stenger F. Numerical Metods Based on Sinc and Analytic
Functions, New York: Springer-Verlag, 1993, 565 p.
12. Young R. M. An Introduction to Nonharmonic Fourier Series.
Revised First Edition, San Diego: Academic Press. A Harcourt Science
and Technology Company, 2001. 235 p.
13. Zhuk A. S., Zhuk V. V. Some Orthogonalities in Approximation
Theory, J. Math. Sci., 2006, vol. 133, pp. 1652–1675.
doi:10.1007/s10958-006-0078-x.
14. Antuna A.,Guirao L. G., and Lopez M. A.
Shannon-Whittaker-Kotel'nikov's Theorem Generalized, Match. Commun.
Math. Comput. Chem., 2015, vol. 73, pp. 385-396.
15. Trynin A. Yu. On Analytical Functions Approximation by Lagrange
- Sturm - Liouville Operators, Tezisy dokladov 10 Saratovskoj zimnej
shkoly "Sovremennye problemy teorii funkcij i ih prilozhenija"
[Proc. 10th Saratov winter school "Modern function theory problems
and their applications"], Saratov, 2000, pp. 140-141.
16. Trynin A. Yu. On Estimation of Analytical Function Approximation
by Interpolation Sinc-Operator, Matematika. Mehanika [Mathematics.
Mechanics], 2005, vol. 7, pp. 124-127.
17. Skljarov V. P. On Best Uniform Sinc Approximation on Finite
Segment, Tezisy dokladov 13 Saratovskoj zimnej shkoly "Sovremennye
problemy teorii funkcij i ih prilozhenija" [Proc. 13th Saratov
winter school "Modern function theory problems and their
applications"], Saratov, 2006, p. 161.
18. Trynin A. Yu. Error of Sinc Approximation of Analytic Functions
on an Interval / A. Yu. Trynin, V. P. Sklyarov. Sampling Theory in
Signal and Image Processing, 2008, vol. 7, no. 3, pp. 263-270.
19. Sklyarov V. P. On the Best Uniform Sinc-Approximation on a
Finite Interval / V. P. Sklyarov. East Journal on Approximations,
2008, vol. 14, no. 2, pp. 183-192.
20. Trynin A. Yu. Estimates for the Lebesgue Functions and the Nevai
Formula for the Sinc-Approximations of Continuous Functions on an
Interval, Sib. Math. J., 2007, vol. 48, issue 5, pp. 929-938.
doi:10.1007/s11202-007-0096-z.
21. Trynin A. Yu. A Criterion for the Uniform Convergence of
Sinc-Approximations on a Segment, Russ. Math., 2008, vol. pp. 52-58.
doi:10.3103/S1066369X08060078.
22. Privalov A. A. Uniform Convergence of Lagrange Interpolation
Processes, Mathematical Notes of the Academy of Sciences of the
USSR, 1986, vol. 39, Issue 2, pp. 124–133. doi:10.1007/BF01159895.
23. Trynin A. Yu. A Generalization of the
Whittaker-Kotel'Nikov-Shannon Sampling Theorem for Continuous
Functions on a Closed Interval, Sbornik: Mathematics, 2009,
200(11):1633.
24. Sharapudinov I. I.,Umahanov A. Ja. Functions Interpolation by
Whittaker Sums and Their Modifications: Uniform Convergence
Conditions, Tezisy Dokladov 18 Saratovskoj Zimnej Shkoly
"Sovremennye Problemy Teorii Funkcij I Ih Prilozhenija" [Proc. 18Th
Saratov Winter School "Modern Function Theory Problems and Their
Applications"], Saratov, 2016, pp. 332-334.