Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru
Dear authors!
Submission of all materials is carried out only electronically through Online Submission System in
personal account.
DOI: 10.23671/VNC.2016.2.5919
Application of Simonenko-Kozak's Local Principe in the Section Method Theory of Solving Convolution Equations with Operator Coefficients
Lukin A. V.
Vladikavkaz Mathematical Journal 2016. Vol. 18. Issue 2.
Abstract: In this work we generalize the Simonenko-Kozak's local structure to algebras generated by multidimensional operators with compact coefficients. Then we apply this local structure to receive the criteria of applicability the method of solving equations for multidimensional convolution operators with compact coefficients.
Keywords: integral operator, convolution operator, local method, section method, compact coefficients.
For citation: Lukin A. V. Application of Simonenko-Kozak's local principe in the section method theory of solving convolution equations with operator coefficients // Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol.
19, no. 2, pp. 55-66.
DOI 10.23671/VNC.2016.2.5919
1. Gohberg I. C., Fel'dman I. A. Convolution Equations and Projection
Methods for Their Solution. Translations of Math. Monographs. Vol. 41.
American Math. Soc., 2005. 261 p.
2. Kozak A. V. Local Principe in the Theory of Projection Methods.
Differencial'nye i integral'nye uravnenija i ih prilozhenija
[Differential and Integral Equations and Their Applications].
Elista, Kalmyk Gos. Univ., 1983, pp. 58-73 [in Russian].
3. Simonenko I. B. A New General Method of Investigation Linear
Operator Integral Equations. I-II. Izvestija akademii nauk SSSR.
Ser. "Matematika" [News of USSR Academy of Sciences. Ser. "Math."],
1965, vol. 29, no. 3, pp. 567-586; vol.29, no. 4, pp. 757-782 [in
Russian].
4. Simonenko I. B. Lokal'nyj metod v teorii invariantnyh otnositel'no
sdviga operatorov i ih ogibajushhih [Local Principe in the Theory of
Operators Invariant Regarding a Shift and Their Circumflexes].
Rostov-on-Don, ZVVR, 2007. 120 p.
5. Deundyak V. M., Miroshnikova E. I. The Boundedness and the Fredhoml
Property of Integral Operators with Anisotropically Homogeneous
Kernels of Compact Type and Variable Coefficients. Russian
Mathematics (Iz. Vuz), 2012, vol. 56, issue 7, pp. 1-14.
6. Deundyak V. M., Lukin A. V. Approximate Method of Solution of the
Convolution Equations on a Group with Compact Coefficients and
Applications. Izvestija vuzov Severo-Kavkazskij region [University
News North-Caucasian Region Natural Science Series], 2013, no. 6,
pp. 5-8 [in Russian].
7. Lukin A. V. Section Method of Solution of Convolution Equations with
Operator Coefficients. Tezisy dokladov mezhdunarodnoj konferencii
"Sovremennye metody i problemy teorii operatorov i garmonicheskogo
analiza i ih prilozhenija - IV" [Modern Methods, Problems and
Applications of Operator Theory and Harmonic Analysis - IV].
Rostov-on-Don, 2014, pp. 36 [in Russian].
8. Pilidi V. S. About Bisingular Equation in the \(L_p\) Space.
Matematicheskie Issledovanija [Mathematical Researches], 1972, vol.
7, no. 3, pp. 167-175 [in Russian].
9. Krasnosel'skij M. A., Vajnikko G. M., Zabrejko P. P., Rutickij Ja.
B., Stecenko B. Ja. Priblizhennoe reshenie operatornyh uravnenij
[Approximate Solution of Operator Equations]. Moscow, Nauka, 1969.
456 p.
10. Ljusternik L. A., Sobolev V. J. Kratkij kurs funkcional'nogo analiza
[Brief Course of Functional Analysis]. Moscow, High School, 1982.
271 p.