Abstract: Let \(Q\) be a convex (not necessarily bounded) set in \(\mathbb C\) with the nonempty interior which has a countable neighborhood base of convex domains; \(A(Q)\) be the space of germs of all analytic functions on \(Q\) with its natural inductive limit topology. Necessary and sufficient conditions under which a fixed nonzero differential operator of infinite order with constant coefficients which acts in \(A(Q)\) has a continuous linear right inverse are established. This criterion is obtained in terms of the existence of a special family of subharmonic functions.
Keywords: continuous linear right inverse, differential operator of infinite order, space of germs of analytic functions, convex set
For citation: Barkina U. V., Melikhov S. N. On a solution operator for differential equations of infinity order on convex sets // Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol. 16, no. 4, pp. 27-40. DOI 10.23671/VNC.2014.4.10256
1. Levin B. Ja. Raspredelenie Kornej Celyh Funkcij [Distribution of
Zeros of Entire Functions], Moskva, Gostehizdat, 1956 (Russian).
2. Korobejnik Ju. F. On the solutions of certain functional
equations in classes of functions analytic in convex domains.
Mathematics of the USSR-Sbornik, 1968, vol. 4, no. 2, pp. 203-201.
3. Korobejnik Ju. F. Representing systems. Russian Mathematical
Surveys, 1981, vol. 36, no. 1, pp. 75-137.
4. Korobejnik Ju. F. On the countable definability of sets. Math.
Notes, 1996, vol. 59, no. 3, pp. 269-278.
5. Korobejnik Ju. F. Right inverse for a convolution operator in
space of germs of analytic functions on connected subsets of C.
Sbornik: Mathematics, 1996, vol. 187, no. 1, pp. 53-80.
6. Krasichkov-Ternovskij I. F. A geometric lemma useful in the
theory of entire functions and Levinson-type theorems. Math. Notes,
1978, vol. 24, no. 4, pp. 784-792.
7. Melihov S. N. Vypuklye konformnye otobrazhenija i pravye
obratnye k operatoru predstavlenija rjadami jeksponent. Tr.
Matematicheskogo Centra Imeni N. I. Lobachevskogo. Vol. 14.
Materialy Mezhdunar. Nauch. Konf. (Kazan', 18-24 marta 2002 g.),
Kazan', Kazanskoe Mat. Obshhestvo, 2002, pp. 213-227 (Russian).
8. Melikhov S. N. Analitic solutions of differential equations of
infinite order on convex sets with an obstacle open in the boundary.
Issledovanija po Kompleksnomu Analizu, Teorii Operatorov i Mat.
Modelirovaniju, Vladikavkaz, Izd-vo VNC RAN, 2004, pp. 141-162
(Russian).
9. Melikhov S. N., Momm, Z. On a linear continuous right inverse
for a convolution operator on spaces of germs of analytic functions
on convex compacta in C. Russian Mathematics (Izvestiya VUZ.
Matematika), 1997, vol. 41, no. 5, pp. 35-40.
10. Palamodov V. P. The projective limit functor in the category of
linear topological spaces. Mathematics of the USSR-Sbornik, 1968,
vol. 4, no. 4, pp. 529-559.
11. Shefer H. Topologicheskie Vektornye Prostranstva [Topological
Vector Spaces], Moskva, Mir, 1971, 360 p. (Russian).
12. Edwards R. Funkcional'nyj Analiz. Teorija i Prilozhenija
[Functional Analisys. Theory and Applications], Moskva, Mir, 1969
(Russian).
13. Bonet J., Meise R., Melikhov S. N. The Dual of the Space of
Holomorphic Functions on Locally Closed Sets. Publ. Mat., 2005, vol.
49, pp. 487-509.
14. Jarchow H. Locally Convex Spaces, Stuttgart, Teubner, 1981.
15. Langenbruch M. Continuous linear right inverses for convolution
operators in spaces of real analytic functions. Studia Math., 1994,
vol. 110, pp. 65-82.
16. Martineau A. Sur la topologie des espaces de fonctions
holomorphes. Math. Annal., 1966, vol. 163, pp. 62-88.
17. Meise R. Sequence space representations for (DFN)-algebras of
entire functions modulo closed ideals. J. Reine und Angew. Math.,
1985, vol. 363, pp. 59-95.
18. Meise R., Vogt D. Einfuhrung in die Funktionalanalysis,
Braunschweig/Wiesbaden, Vieweg, 1992, 418 p.
19. Melikhov S. N., Momm S. Solutions operators for convolution
equations on the germs of analytic functions on compact convex sets
of C^N. Stud. Math., 1995, vol. 117, pp. 79-99.
20. Melikhov S. N., Momm S. Analytic solutions of convolution
equations on convex sets with obstacle in the boundary. Math.
Scand., 2000, vol. 86, pp. 293-319.
21. Momm S. Convex univalent functions and continuous linear right
inverses. J. Functional Analysis, 1992, vol. 103, pp. 85-103.
22. Momm S. Convolution equations on the analytic functions on
convex domains in the plane. Bull. Sci. Math., 1994, vol. 118, pp.
259-270.
23. Taylor B. A. On weighted polynomial approximation of entire
functions. Pac. J. Math., 1971, vol. 29, pp. 523-539.
24. Vogt D. Lectures on Projective Spectra of (DF)-Spaces. Seminar
Lectures. AG Funktionalanalysis, Dusseldorf, Wuppertal, 1987, 36 p.
25. Vogt D. Topics on projective spectra of (LB)-spaces. Advances in
the theory of Frechet spaces. T. Terzioglu (ed.). Istambul, 1987,
NATO ASI Series C., Dordrecht: Kluwer, 1989, vol. 287, pp. 11-27.
26. Wengenroth J. Acyclic inductive spectra of Frechet spaces. Stud.
Math., 1996, vol. 120, pp. 247-258.