Abstract: Complete description of the zero sets of analytic functions in a unit disc, allowing growth near the given finite set of points on the boundary circle, are obtained in this paper.
Keywords: analytic function, unit disk, zero sets of analytic function
For citation: Shamoyan F. A., Rodikova E. G. On characterization of zero sets of the weighted class of analytic functions in a disc // Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol. 16, no. 3, pp.64-75. DOI 10.23671/VNC.2014.3.10239
1. Dzhrbashjan M. M. K probleme predstavimosti analiticheskih
funkcij. Soobshh. Instituta Matematiki i Mehaniki AN Arm. SSR, 1948,
no. 2, pp. 3-40 (Russian).
2. Shapiro H. S., Shields A. L. On the zeros of functions with
finite Dirichlet integral and some related function spaces. Math.
Z., 1962, no. 80, pp. 217-229.
3. Seip K. Interpolating and Sampling in Spaces of Analytic
Functions, Providence (R.I.), Amer. Math. Soc., 2004, 183 p.
4. Djrbashian A. E., Shamoyan F. A. Topics in the Theory of Aαp
Spaces, Leipzig, Teubner-Texte zur Math., 1988, 105 p.
5. Shamojan F. A. Faktorizacionnaja teorema M. M. Dzhrbashjana i
harakterizacija nulej analiticheskih funkcij s mazhorantoj
konechnogo rosta. Izv. AN Arm. SSR. Ser. Matematika, 1978, vol. 13,
no. 5-6, pp. 405-422 (Russian).
6. Shamojan F. A. O nuljah analiticheskih v kruge funkcij,
rastushhih vblizi ego granicy. Izv. AN Arm. SSR. Ser. Matematika,
1983, vol. 18, no. 1, pp. 215-228 (Russian).
7. Borichev A., Golinskii L., Kupin S. A Blaschke-type condition
and its application to complex Jacobi matrices. Bulletin of the
London Mathematical Society, 2009, vol. 41, pp. 117-123.
8. Golinskii L., Kupin S. A Blaschke-type condition for analytic
functions on finitely connected domains. Applications to complex
perturbations of a finite-band selfadjoint operator. J. Math. Anal.
Appl., 2012, vol. 389, no. 2, pp. 705-712.
9. Favorov S., Golinskii L. Blaschke-type conditions for analytic
and subharmonic functions in the unit disk: local analogs and
Inverse problems. Computational Methods and Func. Theory, 2012, vol.
12, pp. 151-166.
10. Favorov S., Golinskii L. Blaschke-Type Conditions in Unbounded
Domains, Generalized Convexity and Applications in Perturbation
Theory, arXiv:1204.4283.
11. Favorov S., Radchenko L. On Analytic and Subharmonic Functions
in Unit Disc Growing Near a Part of the Boundary. Zh. Mat. Fiz.
Anal. Geom., 2013, vol. 9, no. 3, pp. 304-315.
12. Shamoyan F. A. On some properties of zero sets of analytic
functions with given majorant. Theory Functions and Applications.
Collections of Works Dedicates to the Memory of M. M. Djrbashian,
Yerevan, Luys Publishing House, 1995, pp. 169-172.
13. Shamoyan F. A. On the zeros of analytic functions in the disk
with a given majorant near its boundary. Mathematical Notes, 2009,
vol. 85, no. 1, pp. 274-287.
14. Hayman W. K., Korenblum B. A critical growth rate for functions
regular in a disk. Michigan Math. J., 1980, vol. 27, pp. 21-30.
15. Bykov S. V. Faktorizacionnye Predstavlenija i Svojstva Kornevyh
Mnozhestv Vesovyh Klassov Analiticheskih Funkcij, Diss. … Kand.
Fiz.-Mat. Nauk, Brjansk, BGU, 2010, 130 p. (Russain).
16. Titchmarsh E. Teorija Funkcij, Moskva, Nauka, 1980, 480 p.
(Russain).