ISSN печатной версии 1683-3414 • ISSN он-лайн версии 1814-0807 | |||
Войти |
КонтактыАдрес: Россия, 362025, Владикавказ,
|
Уважаемые авторы, просим обратить внимание! Подача статьи осуществляется только через личный кабинет электронной редакции. DOI: 10.23671/VNC.2018.4.9163 Наилучшее восстановление решения задачи Дирихле по неточно заданному спектру граничной функции
Абрамова Е. В.
Владикавказский математический журнал. 2017. Том 19. Выпуск 4.С.3-12..
Аннотация:
Во многих прикладных задачах возникает ситуация, когда требуется восстановить значение функции по некоторой информации (обычно не точной и не полной). Общая задача об оптимальном восстановлении линейного функционала на классе функций по конечной информации впервые появилась в работе С. А. Смоляка. В дальнейшем эта тематика получила достаточно широкое развитие в самых разных направлениях. Существует множество подходов к решению подобных задач. Здесь мы следуем подходу, который предполагает наличие априорной информации об объекте, характеристики которого требуется восстановить. Это позволяет поставить задачу о нахождении наилучшего метода восстановления данной характеристики среди всех возможных методов восстановления. Такой взгляд на задачи восстановления идеологически восходит к работам А. Н. Колмогорова 30-х гг. прошлого века о нахождении наилучших средств приближения для классов функций. Математическая теория, где изучаются задачи восстановления на основе указанного подхода, активно развивается в последние десятилетия, обнаруживая тесные связи с классическими задачами теории приближений и имея различные приложения к задачам практики. Работа посвящена задаче наилучшего восстановления решения задачи Дирихле в метрике \(L_2\) на прямой в верхней полуплоскости, параллельной оси абсцисс, по следующей информации о граничной функции: граничная функция принадлежит некоторому соболевскому пространству функций, а ее преобразование Фурье известно приближенное (в метрике \(L_\infty\)) на конечном отрезке, симметричном относительно нуля. Построен оптимальный метод восстановления и найдено точное значение погрешности оптимального восстановления. Следует отметить, что оптимальный метод использует, вообще говоря, не всю доступную информацию, а ту, которую использует, определенным образом "сглаживает".
Ключевые слова: задача Дирихле, оптимальное восстановление, экстремальная задача, преобразование Фурье
Язык статьи: Русский
Загрузить полный текст
Образец цитирования: Абрамова Е. В. Наилучшее восстановление решения задачи Дирихле по неточно заданному спектру граничной функции // Владикавк. мат. журн. 2017. Том 19, вып. 4. С. 3-12. DOI 10.23671/VNC.2018.4.9163 ← Содержание выпуска |
| |
|||
© 1999-2023 Южный математический институт | |||