Романов А. С.
О вложениях классов функций с обобщенной гладкостью на метрических
пространствах
На метрическом пространстве c борелевской мерой рассматриваются классы
функций, приращение которых контролируется мерой шара, содержащего соответствующие
точки, и неотрицательной функцией, суммируемой в некоторой степени.
Доказываются теоремы вложения для пространств рассматриваемого вида,
определяемых двумя различными мерами, удовлетворяющими условию удвоения.
|
Romanov A. S.
On embeddings for classes of functions with generalized smoothness
on metric spaces
Given a metric space with a Borel measure, we consider the classes
of functions whose increment is controlled by the measure of a ball
containing the corresponding points and a nonnegative function summable
with some power. We prove embedding theorems for these spaces defined
by two different measures satisfying the doubling condition.
|