Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 6 (2011), 43 -- 66

MAXIMAL SUBGROUPS OF THE GROUP PSL(12,2)

Rauhi Ibrahim Elkhatib

Abstract. In this paper, We will find the maximal subgroups of the group PSL(12, 2) by Aschbacher's Theorem ([2]).

2010 Mathematics Subject Classification: 20B05; 20G40; 20E28.
Keywords: Finite groups; Linear groups; Maximal subgroups.

Full text

References

  1. J. L. Alperin , R. Brauer and D. Gorenstein, Finite simple groups of 2-rank two, Scripta Math. 29 (1973), 191-214. MR401902(53#5728). Zbl 0274.20021.

  2. M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), 469--514. MR746539(86a:20054). Zbl 0537.20023.

  3. M. Aschbacher, Finite group theory, Cambridge Stud. Adv. Math. 10, Cambridge Univ. Press, Cambridge, 1986. MR895134(89b:20001). Zbl 0583.20001.

  4. R. H. Dye, Symmetric groups as maximal subgroups of orthogonal and symplectic group over the field of two elements, J. London Math. Soc. 20(2) (1979), 227-237. MR0551449(80m:20010). Zbl 0407.20036.

  5. R. H. Dye, Maximal subgroups of GL2n(K), SL2n(K), PGL2n(K) and PSL2n(K) associated with symplectic polarities, J. Algebra. 66 (1980), 1--11. MR0591244(81j:20061). Zbl 0444.20036.

  6. GAP program (2004). version 4.4. available at: http://www.gap-system.org.

  7. C. Jansen, The minimal degrees of faithful representations of the sporadic simple groups and their covering groups, LMS J. Comput. Math. 8 (2005), 122--144. MR2153793(2006e:20026). Zbl 1089.20006.

  8. W. M. Kantor, Homogeneous designs and geometric lattices, Journal of combinatorial theory. 38 (1985), 66-74. MR0773556(87c:51007). Zbl 0559.05015.

  9. W. M. Kantor, Linear groups containing a Singer cycle, J. Algebra. 62 (1980), 232-234. MR0561126(81g:20089). Zbl 0429.20004.

  10. O. H. King, On some maximal subgroups of the classical groups, J. Algebra. 68 (1981), 109--120. MR0604297(82e:20055). Zbl 0449.20049.

  11. O. H. King, On subgroups of the special linear group containing the special unitary group, Geom. Dedicata. 19 (1985), 297--310. MR0815209(87c:20081). Zbl 0579.20040.

  12. O. H. King, On subgroups of the special linear group containing the special orthogonal group, J. Algebra. 96 (1985), 178--193. MR0808847(87b:20057). Zbl 0572.20028.

  13. O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations, Surveys in combinatorics 2005, 29--56, London Math. Soc. Lecture Note Ser. 327, Cambridge Univ. Press, Cambridge, 2005. MR2187733(2006i:20053). Zbl 1107.20035.

  14. P. B. Kleidman and M. Liebeck,The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series 129, Cambridge University Press, Cambridge, 1990. MR1057341(91g:20001). Zbl 0697.20004.

  15. V. Landázuri and G. M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra. 32 (1974). MR0360852 (50#13299). Zbl 0325.20008.

  16. J. Mclaughlin, Some Groups Generated By Transvections, Arch. Math. 18, 1967. MR0222184(36#5236). Zbl 0232.20084.

  17. B. Mortimer, The modular permutation representations of the known doubly transitive groups, Proc. London Math. Soc. 41 (1980), 1-20. MR0579714(81f:20004). Zbl 0393.20002.

  18. G. M. Seitz and A. E. Zalesskii, On the minimal degree of projective representations of the finite Chevalley groups II, J. Algebra. 158 (1993), 233--243. MR1223676(94h:20017).

  19. A. Wagner, The faithful linear representation of least degree of Sn and An over a field of characteristic 2, Math. Z. 2 (1976), 127--137. MR0419581(54#7602).

  20. A. Wagner, The subgroups of PSL(5, 2a), Resultate Der Math. 1 (1978), 207-226. MR0559440(81a:20054). Zbl 0407.20039.

  21. R. A. Wilson, Finite simple groups, Graduate Texts in Mathematics 251. Springer-Verlag London, Ltd., London, 2009. MR2562037. Zbl pre05622792.

  22. R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. A. Parker, S. P. Norton, J. H. Conway, R. T. Curts and J. Bary, Atlas of finite simple groups representations, (available at:http://web.mat.bham.ac.uk/v2.0/.48).



Rauhi Ibrahim Elkhatib
Dept. of Mathematics, Faculty of Applied Science,Thamar University, Yemen.
P.O. Box: 12559.
e-mail: rauhie@yahoo.com

http://www.utgjiu.ro/math/sma