ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Homotopy of Non-Modular Partitions and the Whitehouse Module

Sheila Sundaram
Wesleyan University Department of Mathematics Middletown CT 06459

DOI: 10.1023/A:1018648219348

Abstract

We present a class of subposets of the partition lattice ( n - 1)!\frac n - k k (n - 1)!\frac{{n - k}}{k} . The posets Q n k are neither shellable nor Cohen-Macaulay. We show that the S n -module structure of the homology generalises the Whitehouse module in a simple way.

Pages: 251–269

Keywords: poset; homology; homotopy; set partition; group representation

Full Text: PDF

References

1. E. Babson, A. Bj\ddot orner, S. Linusson, J. Shareshian, and V. Welker, “Complexes of not i -connected graphs, extended abstract,” Proceedings of the 9th Formal Power Series and Algebraic Combinatorics Conference, Vienna, July 1997.
2. K. Baclawski, “Cohen-Macaulay ordered sets,” J. Algebra 63 (1980), 226-258.
3. K. Baclawski, “Cohen-Macaulay connectivity and geometric lattices,” Europ. J. Combinatorics 3 (1982), 293-305.
4. D.J. Benson, Representations and Cohomology, Cambridge University Press, 1992, Vol. 2.
5. A. Bj\ddot orner, “Shellable and Cohen-Macaulay partially ordered sets,” Trans. Amer. Math. Soc. 260 (1980), 159-183.
6. A. Bj\ddot orner, “Some combinatorial and algebraic properties of coxeter complexes and tits buildings,” Adv. Math. 52 (1984), 173-212.
7. A. Bj\ddot orner, “Subspace arrangements,” Proc. First European Congress of Mathematics, Paris 1992, Birkha\ddot user, Basel, pp. 321-370, 1994.
8. A. Bj\ddot orner, “Topological methods,” in Handbook of Combinatorics, R. Graham, M. Gr\ddot otschel and L. Lóvasz (Eds.), North-Holland, 1995, pp. 1819-1872.
9. A. Bj\ddot orner and M.L. Wachs, “Shellable nonpure complexes and posets I,” Trans. Amer. Math. Soc. 348(4) (1996), 1299-1327.
10. S. Bouc, “Homologie de certains ensembles de 2-sous-groupes du groupe symétrique,” J. Algebra 150 (1992), 158-186.
11. E. Getzler and M. Kapranov, “Cyclic operads and cyclic homology,” Geometry, Topology and Physics, International Press, Cambridge, MA, 1995, pp. 167-201.
12. P. Hanlon, “The fixed-point partition lattices,” Pacific J. Math. 96 (1981), 319-341.
13. P. Hanlon, “Otter's method and the homology of homeomorphically irreducible k-trees,” J. Comb. Theory (A) 74(2) (1996), 301-320.
14. P. Hanlon and R.P. Stanley, “A q-deformation of a trivial symmetric group action,” Trans. Amer. Math. Soc. 350 (1998), 4445-4459.
15. D. Kozlov, “General lexicographic shellability and orbit arrangements,” preprint (1996), annals of combinatorics, to appear.
16. O. Mathieu, “Hidden n+1-actions,” Commun. Math. Phys. 176 (1996), 467-474.
17. J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
18. J.R. Munkres, “Topological results in combinatorics,” Mich. Math. J. 31 (1984), 113-128.
19. D. Quillen, “Homotopy properties of the poset of nontrivial p-subgroups of a group,” Adv. Math. 28 (1978), 101-128.
20. Alan Robinson, “The space of fully grown trees,” Sonderforschungsbereich 343, Universit\ddot at Bielefeld, Preprint 92-083 (1992).
21. C.A. Robinson and S. Whitehouse, “The tree representation of n+1,” J. Pure and Appl. Algebra 111(1-3) (1996), 245-253.
22. L. Solomon, “A decomposition of the group algebra of a finite Coxeter group,” J. Algebra 9 (1968), 220-239.
23. R.P. Stanley, “Balanced Cohen-Macaulay complexes,” Trans. Amer. Math. Soc. 249 (1979), 139-157.
24. R.P. Stanley, “Some aspects of groups acting on finite posets,” J. Comb. Theory (A) 32(2) (1982), 132-161.
25. R.P. Stanley, Enumerative Combinatorics, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1986, Vol. 1.
26. S. Sundaram, “The homology representations of the symmetric group on Cohen-Macaulay subposets of the partition lattice,” Adv. in Math. 104(2) (1994), 225-296.
27. S. Sundaram, “Homotopy and homology of non-modular partitions and related posets, extended abstract,” Proceedings of the 9th Formal Power Series and Algebraic Combinatorics Conference, Vienna, July 1997.
28. M.L. Wachs, “A basis for the homology of the d-divisible partition lattice,” Adv. in Math. 117(2) (1996), 294-318.
29. J.W. Walker, “Topology and combinatorics of ordered sets,” Ph.D. Thesis, Massachusetts Institute of Technology, 1981.
30. J.W. Walker, “Homotopy type and Euler characteristic of partially ordered sets,” Europ. J. Combinatorics 2 (1981), 373-384.
31. S.A. Whitehouse, “ -(Co)homology of commutative algebras and some related representations of the symmetric group,” Ph.D. Thesis, University of Warwick, 1994.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition