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Abstract. We present a class of subposets of the partition lafigevith the following property: The order
complex is homotopy equivalent to the order compleXigf 1, and theS,-module structure of the homology
coincides with a recently discovered lifting of ti§g_1-action on the homology dfl,—1. This is the Whitehouse
representation on Robinson’s space of fully-grown trees, and has also appeared in work of Getzler and Kapranov,
Mathieu, Hanlon and Stanley, and Babson et al.

One example is the subpos@?*l of the lattice of set partitionBl,, obtained by removing all elements with
a unique nontrivial block. More generally, for2 k < n —1, let Q‘; denote the subposet of the partition lattice
I1, obtained by removing all elements with a unique nontrivial block of size equalaad IetPrﬁ< = ﬂikzz Qin.
We show thaP,‘,‘ is Cohen-Macaulay, and th@ﬁ‘ and Qﬁ are both homotopy equivalent to a wedge of spheres
of dimension(n — 4), with Betti number(n — 1)! ”—;k The posetQﬁ are neither shellable nor Cohen-Macaulay.
We show that th&s,-module structure of the homology generalises the Whitehouse module in a simple way.

We also present a short proof of the well-known result that rank-selection in a poset preserves the Cohen-
Macaulay property.
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1. Introduction

In this paper we consider subposets of the partition lafigebtained by removing various
modular elements. Recall thEt, is the lattice of set partitions of anelement set, ordered
by refinement. We say a block of a partition is nontrivial if it consists of more than one
element. The modular elementslaf are precisely those partitions with a unique nontrivial
block (for this and other basic definitions see [25]). For a bounded [fogeat denote by
P the proper part oP, i.e., the poseP with the greatest elemefitand the least elemefit
removed. We write\ (P) for the order complex oP; the simplices ofA (P) are the chains
of P. By theith (reduced) homologyd; (P) of P we mean théth (reduced) simplicial
homology of its order compleA (P). All homology in this paper is taken with integer co-
efficients except for representation theoretic discussions, in which case we take coefficients
over the complex field. All posets are bounded unless explicitly stated otherwise.

For 2<k <n — 1, definePX to be the subposet 1, obtained by removing all modular
elements whose unique nontrivial block has sizeix< k, and defineQﬁ to be the subposet
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Figure 1 The posef;.
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Figure 2 The pose;.

of I1,, obtained by removing all modular elements whose unique nontrivial block has size
In particular,P"~* consists of all partitions ifil, with at least two nontrivial blocks, together
with the greatest and least elements. It is not hard to see that the Rfsats ranked, of
rank (n — 2), one less than the rank ©f,. On the other hand the subposé_l,% have full
rankn — 1 if k > 3.

Recall that a poseR is said to be Cohen-Macaulay if the reduced homology of the order
complex of every intervaly, y] of P, 0 < x < y < 1, vanishes below the top dimension.
The figures 1 and 2 show the (order complexes of) the pdsétsnd Qﬁ, respectively.
Clearly Q3 is not Cohen-Macaulay. Note that the zero-dimensional order complE¥ of
and the one-dimensional order complex@j both have the same homotopy type, and
hence have the same homology.

We describe briefly the motivation for this work. In [26] some general techniques were
developed for computing the homology representation of a poset for a finite group of auto-
morphisms, and applied to Cohen-Macaulay subposets of the partition lattice. Note that
the subposet®X and QK are invariant under the action of the symmetric gr&p In
particular the Lefschetz module (i.e., the alternating sum (by degree) of the reduced ho-
mology modules), AltP¥), is a virtual §,-module. By applying [26, Theorem 1.10 and
Remark 1.10.1] to the subposeR¥, we can show that as (virtua§,-modules,(—1)"*
Alt(PX) and(—1)"~*Alt(Q¥) are both isomorphic to

HIM)ME g — H (). (1.1)

(Here the up arrow indicates induction.) Foe n — 1 the representation given by (1.1) is
the complement oFi (IT,,) in the induction ofH (IT,,_1) from $,_; t0 S,. This is precisely

the representation d&, on Robinson’s space of fully grown trees, as computed by Sarah
Whitehouse (see [13, 20, 21, 31]). The restriction of this representat®nids H (IT,_1).

Over the complex field, up to tensoring with the sign, this is also the lifting o&he-
action on the multilinear component of the free Lie algelbes_; on (n — 1) generators

up to S, described in [11]. There is an obvious surjective order-reversing map from the
proper part of Hanlon’s poset of homeomaorphically irreducible treesmiigibelled leaves

(the posefl,! ,, in the notation of [13]), to the proper part of the poBgt .
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The paper [16] attempts to explain topologically the existence of this lifting, by studying
the action on the cohomology of the complement of the braid arrangement. For two other
contexts in which this lifting appears, see [1] and [14].

For arbitraryk it is not hard to see that (1.1) is in fact a true representatidg, of hus
it is natural to ask whether the homology of the subpoB¥tand QK is concentrated in a
unigue dimension. We answer this question affirmatively, showing that both posets have the
same homotopy type, that of a wedge(of- 4)-spheres. We also show thgf is Cohen-
Macaulay over the integers. (It follows that the pure po§tsrenot Cohen-Macaulay.)

Our main tool is Quillen’s fibre lemma (see [8, 19])). In Section 2 we investigate the
effect on homology of deleting an antichain from a poset (Theorem 2.1) and generalise this
to an analogue for simplicial complexes (Theorem 2.5). As a consequence we obtain, using
only the exact homology sequence of a pair, a simple proof of the well-known result that
rank-selection in a poset preserves the Cohen-Macaulay property. In Section 3 we show
that the subposet®* and Qk are homotopy equivalent (in fa&-homotopy equivalent),
and determine the homotopy type. The representation theoretic aspects are addressed in
Section 4, where we derive directly the formula (1.1), describing3hmodule structure
of the homology ofQ¥ (and hence oPX) in terms of the homology of the partition lattices
[Ty andI1,. We conclude in Section 5 with a brief discussion of possible generalisations
of this work.

The study of partitions with forbidden block sizes has led to the discovery of two other
classes of related subposetdbf. One has the sanf&-homotopy type as the posef 1,
and hence its homology affords the Whitehouse representation. The other has the same
S-homotopy type as the posBk for arbitraryk, 3 < k < n — 2, and hence its homology
affords the generalised Whitehouse representation. These ramifications are described in
[27], and will be the subject of a future paper.

2. Deleting an antichain from a Cohen-Macaulay poset

Let P be any poset, and |k be an antichain irP. For our first result we use the exact
sequence of a pair to obtain information on the homology of the subgdsatof P,
obtained by removing all elements Af in the case whe® is Cohen-Macaulay.

The hypotheses in the theorem below may be relaxed somewhat by considering the more
general case of simplicial complexes; see Theorem 2.5 at the end of this section.

Theorem 2.1 Let P be a Cohen-Macaulay poset of rank r over the integers. Let A be an
antichain inP. Let P\ A denote the subposet of P obtained by deleting the elements of A.
Then the reduced integral homology of R vanishes in all dimensions except possibly
r—2andr—3.

Proof: Considerthe long exacthomology sequence oftheapaiP), A(P\ A)) (see[17]).
SinceP is Cohen-Macaulay, the reduced homologyPofanishes for degrees not equal to
r — 2, and the long exact sequence reduces to the following two sequences:

0 — Hr—2(P\A) = H;_2(P) = Hi_2(A(P), A(P\A)) — H;_3(P\A) - 0
(2.1)
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and, fori <r — 3,
0— Hi(A(P), A(P\A) — I:|i_1(P\A) — 0 (2.2)

We must first compute the relative homology grotpeA (P), A(P\ A)). Clearly thath
quotient chain grou@;i (A(P))/Ci (A(P\ A)) consists of classes of chains going through at
leastone element &. SinceAis an antichain, each such chain must go through exactly one
element ofA. Now consider the boundafymap of this relative complex. By the preceding
remarks it is clear that i€ = xp < --- < Xp = a < --- < X is a (representative of) a
nonzero relativé-chain, wherex, = a is the unique element dk in the chain, then

Go = Y (“D'o<-< K<< X),
O<t<i,t#p

where as usual the hat denotes suppression of an element.
Hence the complex of relative chains is isomorphic to the direct sum of tensor products
(over the integers) of chain complexes

Ci(AP), AP\A) = P Cs(A©0,a)p) @ (AR, Dp). (2.3)

acA
S+t=i—-2

By hypothesis, ineach summand of (2.3) (at least one of) the intervals have free homology.
Consequently, by the ltineth theorem, the relative homology is given by

H(AP), A(P\A) = P Hs0,2)p ® Hi(a Dep. (2.4)

acA
S+t=i—2

Now use the fact that for the interval®, a) and (a, 1) in P, the reduced homology
vanishes except in the top dimension. Hence in the above sum, the right-hand side vanishes
unlesss = rank(@) — 2 andt =r — rank(a) — 2, i.e., unles$ = r — 2. The conclusion
now follows from (2.2). O

As a by-product of this general result, we obtain a simple proof of the fact that rank-
selection preserves the Cohen-Macaulay property, a theorem due independently, and with
different proofs, to Baclawski, Stanley and Munkres.

Corollary 2.2 ([2, Theorem 6.4; 23, Theorem 4.3; 18, Corollary 6.6]) Let P be a
Cohen-Macaulay poset over the integensd let Q be a rank-selected subposet of P. Then
Q is Cohen-Macaulay over the integers.

Proof: Let Q = P\ A whereA is some subset d. It suffices to consider the case of
removing one rank, so that is an antichain. The® is ranked of rank — 1, wherer is
the rank ofP. HenceH;_»(Q) = 0. Now use the preceding result.
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The same argument applies to an intervanwhich either coincides with the corres-
ponding interval ofP, or else is obtained from it by deleting one rank. Henc®iis P
minus one rank, the is Cohen-Macaulay. O

If Pisan arbitrary poset andlis an antichain oP, thena special case of a well-known
formula for the Mobius numbey(P) of P (see [3, Lemma 4.6]) says that

p(P\A) = u(P) = > (0, )p)u((x, Dp).

XeA

Noting thatu.(P) is simply the reduced Euler characteristic of the order compléX, af.,
wn(P) =3, _1(=1)" dimH; (P), we have the following formula (which also follows from
the proof of Theorem 2.1):

Corollary 2.3 Let P and A be as in Theoretal Then

dimH, _3(P\A) — dim H, _»(P\ A)
= Z dimH (0, x)p) dim H ((x, 1)p) — dim H, _»(P).

xXeA

We return now to the partition latticH,,. Recall that ifA is an integer partition of,
then a set partitiorx in IT, is said to be otype i if x has block sizeg, A,, .... For
2 <k <n-—1,letQk be the subposet obtained by deleting the antichain consisting of all
elements of typek, 1"¥).

Fork > 3, the poseQﬁ is ranked of rankn — 1). For leta € IT, have a unique nontrivial
block of sizek, and suppose coversx and is covered by. Then all blocks ofx are
singletons except possibly for two blocRg, B, whose union is thk-block Aofa. Assume
first that B; has size less than or equalke- 2. Sincey coversa, eithery is a modular
element with unique nontrivial bloclA U {p} or elsey has two nontrivial blocksA and
{p1, pP2}; here thep’s are singletons ad. In either case there is a non-modular elemrent
in I, in the interval(x, y): in the first case merge the blo&k of x with the singletor{ p}
to formz. In the second case merge the singletppand ps.

Now suppose is obtained froma by splitting the unique nontrivial blocld into the
block B; and a singletop’. (Thusx is itself modular.) Ify is modular with nontrivial block
A U {p}, merge the singletong and p’. If y has a second nontrivial blodlp:, p,} then
merge the singletong; andp,. In each case this produces a non-modular partitiorthe
interval (x, y).

Note thatQ? = P?2 is the rank-selected subposet obtained by deleting the atoms. For
n > 5 QK is not a lattice. The smallest interesting exampl@% whose order complex is
disconnected and one-dimensional, and is homotopy equivalent to a wedge of two 0-spheres
(see figure 2 of Section 1). In particul@®;] is not Cohen-Macaulay. In the next section
we shall see that this is true in general.

Finally, we note that Theorem 2.1 gives the following fact, which will play a crucial role
in the next section.
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Proposition 2.4 The reduced integral homology of®anishes in all dimensions different
fromn—3and n— 4.

In the next section we shall show that the homologyQyfis concentrated in a unique
degree. It is not difficult to construct examples of a Cohen-Macaulay @gésatd an
antichainA which show thatP\ A can have homology in both degrees.

We can relax the hypotheses of Theorem 2.1 by considering the appropriate analogue
for simplicial complexes. Recall that the litk(v) of a vertexv of a simplicial complex
A is the subcomplex whose simplices are the fdeed A such thaw ¢ F andF U {v} is
(a simplex) inA.

Theorem 2.5 LetA be afinite simplicial complgxand let A be a subset of the vertices of

A such that every facét.e., maximal facg of A has at most one vertex in A. Assume that

there is an integer d such that

(i) the ith reduced homology a@f vanishes for all degreess d, and

(ii) for every vertex & A, the ith reduced homology of the link of a Anvanishes for all
degrees iz d — 1.

Let A’ be the subcomplex @ obtained by removing all faces having a vertex in the set A.

ThenH;(A’) = Oforalli #d—1andi#d.

Proof: The following observations are sufficient, since the essential ideas are as in the
proof of Theorem 2.1. The key point now is that the relative chain complex)/C(A")
is isomorphic to the direct sum, ovare A, of the chain complex of the suspension of the
link ¢k(a) of ain A.

Hence the relative homology is given by the formula

Hi(A, A) = @ Hjka@)).
acA
j=i—1

But by hypothesis, the linkk(a) has zero homology in degregs#d — 1. That is,
the relative homology is zero for degregsl. Now the conclusion follows exactly as in
Theorem 2.1. O

In the particular case whef is a pured-dimensional Cohen-Macaulay simplicial com-
plex, conditions (i) and (ii) of the above theorem are automatically satisfied. The conclusion
of Theorem 2.1 may thus be obtained by takihgo be the order complex of a Cohen-
Macaulay poset of ran#t + 2.

The full result of [18, Corollary 6.6] also follows from the above. In addition, just as
we obtained Corollary 2.2, we recover Stanley’s result on subcomplexes of completely
balanced Cohen-Macaulay complexes (see [23, Theorem 4.3]) from Theorem 2.5. The
details are identical to the above proof and the proof of Corollary 2.2.
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3. A homotopy equivalence

We begin by stating a powerful theorem of Quillen, which we shall use repeatedly throughout
this paper. For a survey of the variations on this useful principle see [8].

Theorem 3.1 (Quillen’s fibre lemma) [19, Proposition 1.6] Let P and Q be bounded
posets and let f P — Q be an order-preserving map. Assume that for atl @, the fibre

F. = {ze P: f(2) > a}is contractible. Then f induces a homotopy equivalence of the order
complexed (P) andA (Q). (The same conclusion holdsifthe fibré & {z € P:f(z)< a}

is contractible for all ac Q.)

Recall thatPX is the subposet dfl, obtained by deleting all modular elements of type
(i,1"), for2 <i < k. ThusP¥ = N*_, Q\.. It follows from the remarks abou® that
Pk is also ranked, but of rank — 2 (since the atoms have been deleted). The aim of this
section is to show that th@ — 4)-dimensional complex ( Pr‘,‘) and the(n — 3)-dimensional
complexA(Q¥) have the same homology. In fact the following stronger result holds.

Theorem 3.2 The order complexes of‘Rand @ are homotwui&lent. More gen-

erally, for any subset | of2, ...,k — 1}, the inclusionﬁ} — QXN (N QL) induces a
homotopy equivalence of the corresponding order complexes.

Proof: We shall only prove the first statement, since the second follows by the identical
argument. PN

Consider the inclusion map PX — QK. By Quillen’s fibre lemma we need only show
that the fibres=, = {z € Pk : z > a} are contractible. This is clearly trueafe PX, so
assuma e QK\PX. Thenais a modular element with a unique nontrivial bldgof sizei,
2 <i < k- 1. For notational convenience assuaris the partition (witm —i + 1 blocks)
in which the elements,P, ..., n — i are the singletons. We may vieaas a partition of
n —i + 1 elements with one distinguished element consisting of the tockhe fibreF,
is thus poset isomorphic to the pos&t i, 1(S(k)) obtained fromﬁn,m by removing a
setS(k). This setS(k) consists of all modular elements whose unique nontrivial block is
of cardinalitys, 2 < s < k+ 1 — i, and contains the distinguished elemBnt

The fact that these posets are contractible follows from the next lemma. O

Lemma 3.3 Let k > 2, and let S be the subset of modular element§igfof type
(j, 1), 2 < j <k, such that n is in the unique nontrivial block of every element of S.
Let R,(S) be the subposet @1, obtained by removing all elements of S. T(ibe order

complex of R,(S) is contractible.

Proof: Let«a, denote the partition i, consisting of exactly two blocks, one of which
is the singleton blockn}. Note thaix, € R,(S). Define a mapf : R, (S) — I1, by

f(X) = XA an.
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HereA denotes the meet operation in the lattitge Note that the effect of taking the meet
of x with «p, is to fix x if nis a singleton ok, or else to produce a new partitiafy where

X’ is obtained fronx by splitting the blockB containingn into two blocks so than is a
singleton. Now observe that

(a) f is order-preserving;

(b) the image off is contained iR,(S) (for this it suffices to note thad is not in the
image of f, and this is ensured by the fact tt&tontains all the atoms whose unique
nontrivial block contain®);

(c) f(x) =xandf(f(x)) = f(x)forall x.

Conditions (b) and (c) together imply that the fibfes={y: f (y) > a} of f are con-
tractible for alla in the image off . Hence, by Quillen’s fibre lemma agaifijs a homotopy
equivalence betwedR, (S) and the image of . But the image off clearly consists of all
partitions inIT, in whichn is a singleton, except for the least elemenilpf That is, the
image of f is poset-isomorphic tdl,_; U 1, where thel is provided by the two-block
partitiona,. Hence the image of is contractible.

This completes the proof of Theorem 3.2. O

Remark 3.3.1 The conclusion of Lemma 3.3 is valid for more general sutfS8etsnodular
elements, as long &&contains all the modular elements of tyg@ 1"?), (i.e., atoms) and
thatn is in the nontrivial block of all elements & The special case of Lemma 3.3, when
Sconsists only of atoms, follows from [29, Theorem 6.1]; h8iie the set of complements
of the two-block partitionr, in whichn is a singleton (for elaborations of this principle see
the references in [8]).

Theorem 3.4 Let2 < k < n— 1. The reduced integral homology of the posefsaRd
QX is free everywhere and vanishes except in dimengierd). This holds more generally

A
for the posetQX N (N, Q). | €{2,...k—1}. —
In particular for n > 4and k> 3, the(pure) posets @, QX N (MNie) Qn), 2 ¢ 1, are not
Cohen-Macaulay.

Proof: From Theorem 3.2 it follows that the two posets have the same homology. Since
PX has rankn—2), its order homology vanishes for all degrees greatertha, and is free

in the top degree. On the other hand, Proposition 2.4 saysthaan have nonvanishing
homology only in degrees — 3 andn — 4. The result follows. O

As one more application of these arguments, we also obtain the following.

o . A
Theorem 3.5 The poseP~*, and hence als@}*and Q) N (M, Qu). | € 1{2,...,
n — 2}, is homotopy-equivalent tA,_;. Hence the order complexes of B, Q"~* and

QM1n (Nia Q). 1 € {2,...,n — 2}, have the homotopy type of a wedge(inf- 2)!
spheres of dimensiam — 4).
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Proof: Considerthe may : P/r?*\l + I, as defined in Lemma 3.3. The image of this map
consists of all partitions i, such than is a singleton, except for the two-block partition

an of Lemma 3.3; itis therefore isomorphicﬁm,l. The fibres (with respect to the image!)

are contractible by the same argument as in the proof of Theorem 3.2. More precisely, we
consider only fibres, = {zeP~1: f (z) > a} for a in the image off . Note that the fibre

of the two-block partitior,, of Lemma 3.3 is empty and hence not contractible. The result
now follows by Lemma 3.3 and Quillen’s fibre lemma.

The final statement follows from the well-known fact that the order complex of the
partition lattice I, is shellable ([5, Example 2.9]), and hence (see [6, Theorem 1.3],
[9, Theorem 4.1]) has the homotopy type of a wedgérof 1)! spheres of dimension
(n — 3) (see [24] for the Nbius (Betti) number computation). O

From Corollary 2.3 we now have

Corollary 3.6 For2 < k < n— 1, let 8¢ denote the common dimension of the unique
nonvanishing homology of the poset§dhd QX N (N, Q\). | € {2,...k—1}. Then

—k
By = (D" *u(Py) = (=D"*u(Qy) = (n— 1)!”T.

In order to investigate whether or nBf is Cohen-Macaulay, we need to look at proper
intervals in the poset. Note that the obvious analogue of Theorem 3.2 is false for arbitrary
intervals of P¥. For example, irQg the intervald’ = (0, 1213456 is homotopy equivalent
to a wedge of six sphere® (it coincides with the same interval i), whereas irP the
interval J = (0, 123456 has rank 3. It is not hard to see thhhas the homotopy type of
a wedge of 7 spheres of dimension 1.

To obtain information on interval®, y) in PX, we need the following generalisation of
Lemma 3.3.

Lemfga 3.7 Let S be the subset of the modular partitionglipas in Lemma.3and let
y € In, such that y¢ S and n is in a nontrivial block of y. Théthe order complex 9f
the subposd, y]\'S of the interval0, y] is contractible.

Proof: Notethat = [0, y]\Sis simply the interval, y]inthe poseR,(S) of Lemma 3.3.
Restrict the mapf of Lemma 3.3 to the intervdl = (0, y) N Ry(S). Clearly f(I) < I.
The image off consists of all partitions i such that is a singleton, except for the
Also f(y) e I : this is because is not a singleton iry, and hencef (y) # y. Clearly
f (y) is the (unique) greatest element bfl ), and hencef (1) is contractible. Now by the
arguments of Lemma 3.3,is contractible. O

Proposition 3.8 Lety e PX. Let J denote the intervaD, y) in PX, and let J denote
the subset of the intervab, y) in QX obtained by removing the setyM of all modular
elements whose unique nontrivial block coincides with a block afg has sizeck. Then
the inclusion J— J’ induces a homotopy equivalence of order complexes.
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Proof: This follows by checking that the fibres are contractible, as in Theorem 3.2, except
that now we make use of Lemma 3.7. Note that removal of the elements in thk, gés
necessary in order to apply the lemma. O

Proposition 3.9 Lety, J, J’ be as in Propositior8.8. Then the homology of (and J)
vanishes in all degrees different frarmmnkg, (y) — 3, the top dimension of the interval J of
Pr'f (hererank;, denotes the rank function of,).

Proof. Proposition 3.8 implies that andJ’ have the same homology. There are two key
observations. First)’ is obtained from the intervaD, y) in I, by deleting an antichain.
Hence by Theorem 2.1/ can have nonzero homology only in degrees fank) — 2 and
rankz, (y) — 3. Second, the dimension of the order complexJas the smaller of these
two degrees. The result follows. O

LetJ = [x,y],x # 0,y < 1 be an interval in the pos&. First assume there are two
nontrivial blocks ofx which are contained in distinct blocks yf In this case it is clear that
the interval k, y] of P coincides with the interval betweerandy in IT,, and is therefore
Cohen-Macaulay.

Next suppose all the nontrivial blocks rfare contained in a single block gf Letg
be the size of the nontrivial block; of X, 1 <i <r, and lets be the size of the nontrivial
block B of y which contains them. Note that> 2. Letx’ be the partition of the seB
induced byx (x’ hasr nontrivial blocksA; ands — r singletons). Then the intervat[y]
of P is isomorphic to a product of the intervad’[i] in PX, together with a collection of
partition lattices.

These observations and the preceding results showPha Cohen-Macaulay if and
only if all intervals of the form k, 1] have homology which vanishes in all dimensions less
than the highest. Although the analogue of Theorem 3.2 does hold for such intervals, this
fact is not as helpful in this case. The difficulty occurs because there is no longer a shift in
the dimensions of the order complexes of the interdaésd J’.

Proposition 3.10 Let J =[x, 1], x # 0,be aninterval in B. Let J be the interva[x, 1]
in the poset . Then the inclusion map J» J’ is a homotopy equivalencand hence J
and J can have nonvanishing reduced homology only in dimensierBn- ranks, (x) or
n — 4 — rankg, (X).

Proof: The statements of the theorem are immediat¥ fland hencel) coincides with
the interval k, i] of Iy, i.e., if X is not smaller than a modular element of tyje1"¥).
Hence we consider the other case.

We use the same argument as in Theorem 3.2. We need to show that thEfibrég
J:z>a}forae J\Joftype(j,1"1), 2 < j < k — 1, are contractible. LeB be the
unigue nontrivial block of.

The fibreF, is isomorphic to a poséR,(S) as in Lemma 3.3, whema is the number of
blocks ofa, andSis as described in the proof of Theorem 3.2. Hence it is contractible by
Lemma 3.3.

The conclusion now follows from Theorem 2.1. O
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Let 2 < k < n— 1. Fix an integera between 2 andl. DefineTnf,e'f to be the subposet
obtained fronTI, by deleting all modular elementoftype(j, 1"1), a < j < k, such that
the unique nontrivial block ot contains the largest integers —a+ 1, ..., n. Similarly
defineTnf;‘ to be the subposet obtained frdmy by deleting all modular elemenksof type
(k, 1), such that the unique nontrivial block ®tontains the elements—a+1, ..., n.
Letx € PX be of rank<k — 1, and assumg has at least one singleton block. Then it is
easy to see thak| i]pnk is poset isomorphic td’n{';, while [x, i]Qh is poset isomorphic to

TX, wherem is the number of blocks of, anda is the number of nontrivial blocks of.

Hence Proposition 3.10 may be rephrased as follows:
Let2 <a <k < n— 1. Theinclusion FX — Tk is a homotopy equivalence.
Note that the order complexesBf¥ and T X both have the same dimension- 3), and

hence, by Theorem 2.1, we can only conclude that they both have nonvanishing homology
only in degrees — 3 andn — 4. Moreover from Corollary 2.3 we have

dim Ho_3(T5¥) — dim Hn_4(T;7X) = (n - a)!<(n - k=1 >

n—a! (k—a)!

In particular, since the right-hand side is clearly positive, we are forced to conclude that
homology is nonzero in degréa — 3).
Fortunately it is not hard to show that

Proposition 3.11 The posets T¥ are (pure) shellable. Hence the posetgTand T
are both homotopy equivalent to a wedgerot- a)! (52 — 8::3',) spheres of dimension

(n — 3). Hence(the order complexes dall intervals of the fornix, 1] and[x, y], x # 0,
in PXand ¢ have the homotopy type of a wedge of spheres.

Proof: We shall use the following simple EL-labelling of the partition lattice due to Wachs
[28]. If u — v is a covering relation i, so thatv is obtained frormmu by merging two
blocksB; and B, define the label of the edda < v) to be maxB; U B;). We shall show
that this EL-labelling restricts to an EL-labelling 'dirfe';.

With respect to this labelling, there is a unique strictly increasing cbaiy in every
interval (x, y) of IT,. By [5, Proposition 2.8], it suffices to show that for every y in
T,7k, the chaircy, is a chain of T X.

We need only consider those elemerts< y of Tnj;‘ for which the interval(x, y)n,
contains elements forbiddenTifX. Such an elememtmust have a unique nontrivial block
B of sizek containing thea largest integera — a + 1, ..., n. Suppose the unique strictly
increasing chaiyy, = (X = 2 < 71 < --- < z = Y) contains the elemerd, since
X # z, it must therefore have the labebn one of its edges. This edge can only be the last
edge of the chain, which implies that= z; = vy, contradicting the fact that € Tnf;‘.

The remaining statements follow from the remarks preceding the proposition. O

Putting together the work of this section, we have shown



262 SUNDARAM

Theorem 3.12 The poset Pis Cohen-Macaulay over the integers.

Fork = 2, P2 is simply a rank-selected subposet Idf,, hence its order complex
is shellable by [5, Theorem 4.1]). It follows from the general theory of shellability (see
[6, Theorem 1.3] and [9, Theorem 4.1]) that the order complex has the homotopy type of a
wedge of spheres. The subpoBgt(in fact the intersection lattice of a codimension 2 orbit
arrangement, and denot€ld, 2 1. 1) in this context [7]), was shown to be CL-shellable by
this author and V. Welker (1993, unpublished), and independently in recent far-reaching
work of Kozlov ([15]). However this argument seems to break down at a key poit:for
Fork > 5 it can be seen that upper intervais 1) in Pk are not totally semimodular,
making it difficult to show CL-shellability.

However, by using a topological result and a technical lemma due to Bouc, we can show
that

Theorem 3.13 Let2 < k < n — 1. The order complex of the poset& Q (N, Q).
| € {2,...,k— 1} is homotopy equivalent to a wedge(gf) spheres of dimension-a 4.

Proof: The cas& = n—1 was settled by Theorem 3.5, while the case 2 follows from
Theorem 3.1 and the fact that the order comple@ﬁpfs shellable. Assumes8 k < n-—2.

The cases < 5 follow easily by inspection and using Theorem 3.4. Thus we assume
n> 6.

It suffices by Theorem 3.2 to consider the po§t We have shown that the order
complex has the same integral homology as that of a wedg¥ epheres of dimension
n — 4. In order to show that the homotopy type is also the same, we invoke a result from
homotopy theory: By [8, 9.15], it suffices to show that the order comple®'pis simply
connected.

Lemma 3.14 below provides a technical tool for obtaining information about the funda-
mental group of the order complex of a poset.

Consider the inclusion rlat\pP,?—le QK. We claim that, for every maximal element
a ingﬁthe fibres® = {x eP"~1: x < a} are nonempty and connected. This is obvious if
ae PM1. The maximal elements iQK\ P~* clearly all have two blocks, one of which has
sizen — 1. If ais such an element, the (order complex of the) fiBris clearly homotopy
equivalent to the order complex &f'~Z, and hence has the homotopy type of a wedge of
(n — 5)-spheres. Since > 6, the claim follows.

Note that whem > 6, the order complex oP"~1 is connected and simply connected
by Theorem 3.5. Hence Lemma 3.14 applies, showing that the fundamental grQ#jjisof
trivial. O

Lemma 3.14 ([10, Section 2.2.2, Lemme 6])Let f: X — Y be an order-preserving map

of posets X and Yand assume that the order complex of X is connected. If for every
maximal element y i, the order complex of the fibreYfi= {x € Xix< y} is nonempty

and connectedhen the order complex of Y is connected and the induced homomorphism
of fundamental groups:(f) : 71(X) — m1(Y) is surjective.
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4. The representation of the symmetric groupS, on the homology

In this section all homology is taken over the field of complex numbers. We shall first
compute theS,-module structure of the unique nonvanishing homology of the pQ&et

For this we need to recall some of the results of [26]. For a finite p@sand a finite
group G of automorphisms of), we denote by AlQ) the Lefschetz G-)module of Q,

i.e., Alt(Q) = Y (—D'Hi(Q).

Theorem 4.1 (See [26, Theorem 1.10 and Remark 1.10.1]) et P be a Cohen-Macaulay
poset of rank r G a finite group of automorphisms of, Bnd Q a G-invariant subposet
of P.

Then as G-modules

(—D'AIt(Q) — H(P)
= $H (—D*H O, x)p ® H(X, X2)p ® - ® H(xk, Dp) 1S ;

C:(6<X1<---<Xk<i)
X €Q

where the sum runs over all representatives of G-orbits of chains ¢ of elements npt in Q
and G is the stabiliser of the chaincin P.

In the special case whe\ Q is an antichain, this result simplifies, giving

Theorem 4.2 Let P be a Cohen-Macaulay poset of rank r and G a finite group of auto-
morphisms of P. Let Q be a G-invariant subposet of P such tha@ i an antichain.
Then as a G-modulgthe Lefschetz moduldt (Q) of Q is determined by

D" TAQ+HMP) = @ (HO. x)p @ HX, Dp)1E,.
0<x<i
xeP/G,x¢Q

Another way to obtain Theorem 4.2 is to observe that all the maps in the exact homology
sequence of the paiP, Q) areG-equivariant; consequently the proof of Theorem 2.1 can
be madeG-equivariant to yield Theorem 4.2.

The hypotheses of the next theorem arise frequently in the study of subposets of the
partition lattice. The theorem is a general result on the homology representation of upper
intervals in posets of partitions, and was used extensively in [26]. The details of the proof
are identical to the proof of [26, Theorem 1.4].

Theorem 4.3 [26] Let A, C T1, be a family of posets of set partitions and le€ XA, be

of typeA wherex is an integer partition of n with mblocks of size i. Assume thgt, i)An

is poset isomorphic to a poset ,Bvhere r is the number of blocks of x. There is an action
of the symmetric group; ®n the poset B by permuting the blocks of x. Let denote the
(possibly virtua) representation of Son the Lefschetz moduldt (B, ). Note that there is

a copy of the Young subgroup Sy, in S. Let G, denote the stabiliser of;xhus G, is
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the direct product of wreath product groups Sy, [S], where §[S] is the wreath product
group obtained by letting,Sact on a copies of S

Finally assume that the restriction of the representatignto x; S, can be written
(uniquely as the following sum of irreducible modules

Olr»l«xismi = ZC;; Qi Voo,

wherei denotes the ordered tuple of partition® of my, and \,, denotes the irreducible
Sn -module indexed by the integer partitioft.

Then the(possibly virtua) representation of ¢ on the Lefschetz module ¢f, i)An,
Alt((x, 1)a,) is given by

Z ¢ ®i Voo [1s],

where Vi [15] denotes the wreath product,$S]-module of the irreducible W, with the
trivial S;-modulels.

The formula in the preceding theorem is more compactly expressed in terms of the
plethysm operation and symmetric functions; see [26] for details.

For the purposes of this paper we shall only need to apply Theorem 4.3 to the upper
interval (x, i) of the partition latticell,, whenx is an element of typek, 1"%). In this
case all the posets involved are Cohen-Macaulay. We wtittor the representation of
S, on the top homology ofl,. The interval(x, 1) is isomorphic to the partition lattice
IM,_k+1, and hence in applying Theorem 4.3 we need to compute the restrictignaf;
to the stabiliser ok, which is conjugate to the Young subgro8p x x S. But, by [24],
this is just the regular representation®f . Hence we have the following result, which
was also worked out in [26].

Corollary 4.4 (See [26, Example 2.11]) Let x be an element of tyjgk, 1) in IT,. The

representation of the Young subgroyp Sx S on the top homology of the intervét, 1)
is

Pn—k ® 1&,
wherep,_x denotes the regular representation ¢f S
It is now easy to compute the homology representatio@/f

Theorem 4.5 Let2 < k < n— 1. The representation of the symmetric groypo8 the
unique nonvanishing homolog¥,_4(QX) is given by the quotient module

(on—k ® ﬂk)Té_kX&/T[n-
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Proof: Let xo denote a partition of typ&k, 1"~%) whose stabiliser is the Young subgroup
S x S,_k. Theorem 4.2 gives the following equality §f-modules:

Hin-a(Q) ® Hn_s(M) = (H (0. x0) ® Hxo. DTS
Now use Corollary 4.4 and the fact thdX Xo) is isomorphic tolT. O

Our next goal is to compute the homology representatioRofWe indicate two ap-
proaches. The first is a straightforward application of Theorem 4.2, and uses the same
arguments as in the proof of Theorem 4.5.

Theorem 4.6 Let2 < k < n—1. Asan §module the unique nonvanishing homology
Hn_a(P¥) of PXis given by the quotient module

Tink = (Pn7k®”k)T§7kx&/ﬂn§ (4-1)
here p,_x denotes the regular representation gf S

Proof: We proceed by induction dn The result holds fok = 2 by [26, Theorem 2.10
and Example 2.11]. Assume it holds for all parameters 8 < k — 1. Now PX is the

subposet ofP¥~! obtained by deleting the elements of tyfle 1"%). Hence, ifxo is a

partition of type(k, 1"-¥) whose stabiliser is the Young subgro8px S,_k, then using
Theorem 4.2 (wittP = P¥~1 andQ = P¥) we have the equality o&,-modules

Fin-a(PX™) = Fin-a(PY) = (H (0. x0)pg-1) ® H (00, D)) TS 5.

The interval(Xo, 1)Pk 1in Pk 1 is isomorphic to a partition lattice, and tha Kk X S)-
module structure of its homology follows from Corollary 4.4. The inter@axo) pi-1 N
Pk-1 is clearly isomorphic td3k . By induction hypothesis the structure of the homo-
Iogy of P{ ! as anS.-module is given by the representatisii_1. It follows that as an
(S—k X &)-module, the homology qo Xo)pk-1isgivenby k|, ® i k—1. Now by routine
manipulations the result follows. O

Corollary 4.7 Let2 < k < n— 1. The character values of the representation of the

symmetric group Son the unique nonvanishing homology ¢fdhd of ¢, for an element
in §, of cycle-typer, are

(_1)k75 M(d) ( >|(n -k, ifo= (dg, 1n7k), d|k

0, otherwise
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Proof: By a well-known result of Hanlon (see [12, Theorem 4.1], [24, Lemma 7.1]), the
character values of the representatigron an element of cycle-type in S, are given by

n d n n
(—1)“d$dd(g)!, if o = (d%).d | n
0, otherwise

Now the result follows from formula (4.1). O

By Theorems 4.5 and 4.6, the pos@fsand QX haveS,-isomorphic homology. In fact
we can show that the homotopy equivalence of Theorem 3.23%-Aomotopy, thereby es-
tablishing the result in another way. First we state the group-equivariant version of Quillen’s
fibre lemma.

Theorem 4.8 (See, e.g., [4, Chapter 6])Let P and Q be bounded posdtt G be a finite
group of automorphisms of P and,@nd let f: P — Q be an order-preserving G-map of
posets. For ac Q let G, denote the stabiliser of a. Assume that for aka), the fibre

F. = {ze P: f(2) > a} is Ga-contractible(i.e., the fixed-point subposet® of points in

F, fixed by G, is contractiblg. Then f induces a G-homotopy equivalence of the order
complexe& (P) andA(Q). (The same conclusion holds ifthefibré & {z e P:f(z)<a}

is Ga-contractible for all ac Q)

In order to show that the homotopy equivalence of Theorem 3.2 is group equivariant,
we need to show that the fibr&g in the proof of the theorem ai@,-contractible, where
G, is the stabiliser of the elemet of type (j, 1"~ }). (Thus G, is isomorphic to the
Young subgrous,—j x §;.) This in turn will follow from the group-equivariant version of
Lemma 3.3.

It is not hard to see that the homotopy equivalence of Lemma 3.3 % _grhomotopy,
where we identify§,_; with the subgroup 0§, which fixesn. For any subgroupl of S, 1,
it is easy to check that the mafprestricts to a homotopy equivalence on the fixed point
subposeR,(S)" consisting of points fixed by, and that the image remains contractible.
Hence the posetR,(S) are in factS,_;-contractible.

Proposition 4.9 The inclusionl/:;nE > /Q\,‘g and more generallyfor any subset £ {2, ...,
k — 1}, the inclusion

iel

A
Pl QN (ﬂ Q‘n)
induces an $homotopy equivalence of the corresponding order complexes.

These observations also imply that the homotopy equivalence bqu/i]e\érand h_1
in Theorem 3.5 is ai%,_1-homotopy. Because the cdse- n — 1 is of particular interest,
we state it separately:
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Corollary 4.10 The posets 1 and Qi1, and more generallythe posets
A

Qg-lm(ﬂQ‘n), I C{2,....,n—2},

iel
are $._1-homotopy equivalent ti,_, and have homology modules that areiSomorphic
to the representation

(-0, /. (4.2)

This is the representation & computed by Sarah Whitehouse [31] on the tree complex
of Alan Robinson (see also [13, 20, 21]). It follows from Corollary 4.10 (or by inspecting
character values in Corollary 4.7) that the restrictioig{o, is the representatiom,_;.

Denote by, the lifting of 7,_1 given by the representation (4.2). \g}_1 1) denote the
irreducible S,-module indexed by the integer partitiom — 1, 1). By basic manipulations
one sees that

7in ® Vin-1,1) = 7n, (4.3)

a formula which appears in [11].

5. Conclusion

In this final section we discuss some questions raised by the phenomena exhibited in this
paper for the partition latticel,.

Let M, denote the subposet &F, consisting of the modular partitions i, together
with the element$ andi. Clearly M, is just the truncated Boolean lattice of subsets of
ann-set, with the subsets of size 1 (i.e., the rank one elements) deleted. It follows from
Stanley’s theory oR-labellings ([25]) that the Mbius number ig (M) = (—=1)"(n—1).

On the other hand, by Theorem 3.4, we know tﬁ,atl = I1,\ M, has Mdbius number
(=D)"*(n - 2)!

Hence we have, at the level ofdius numbers, the equation

(M \Mn) e (M) | = [ (TTn)|. (5.1)
We also have the topological result that
A(TT\Mp) =~ A(TT,_1). (5.2)

The formula (4.3) of the preceding section further suggests that the factorisation (5.1)
carries over to the homology, at the level ®fmodules, with the introduction of a sign
twist. By aresult of Solomon ([22], see also [24]), the representati& of the homology
of M, is precisely the irreducible indexed by the integer partitinl"~?). Hence (4.3)
says that as modules over the integers,

HNn—4(Hn\|\7|n) ® HNn—l(Mn) = |:|n—3(l_[n)’ (5-3)
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and asS,-modules,
|:|n—4(1_[n\'\7|n) Y |:|n—1(Mn) = |:|n—3(1—1n) ® Sgrbn' (5-4)

It would be interesting to see if these phenomena, e.g., (5.1) and (5.3), occur for other
instances of removing modular elements from a supersolvable geometric lattice. For ex-
ample, the analogues of (5.1) and (5.3) hold trivially for the Boolean lattice, where every
element is modular. The analogue of (5.2) however is clearly false.
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