ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

A New Distance-Regular Graph Associated to the Mathieu Group M 10

A.E. Brouwer , J.H. Koolen2 and R.J. Riebeek3

2Graduate School of Mathematics, Kyushu University, 6-10-1 Hakozaki Higashi-ku Fukuoka 812 Japan

DOI: 10.1023/A:1008685726957

Abstract

We construct a bipartite distance-regular graph with intersection array {45, 44, 36, 5; 1, 9, 40, 45} and automorphism group 3 5 :(2 \times M 10) (acting edge-transitively) and discuss its relation to previously known combinatorial structures.

Pages: 153–156

Keywords: distance-regular graph; Mathieu group; spectra of graph

Full Text: PDF

References

1. E.R. Berlekamp, J.H. van Lint and J.J. Seidel, “A strongly regular graph derived from the perfect ternary Golay code,” A survey of combinatorial theory, Symp. Colorado State Univ., 1971 J.N. Srivastava et al., eds., North Holland, 1973.
2. A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-regular graphs, Springer, Heidelberg, 1989.
3. A.E. Brouwer and W.H. Haemers, “Structure and uniqueness of the (81,20,1,6) strongly regular graph,” Discrete Math. 106/107 1992, 77-82.
4. M. Sch\ddot onert et al., GAP: Groups, Algorithms and Programming, Aachen, April 1992.
5. B.D. McKay, “Nauty users guide (version 1.5)”, Technical Report TR-CS-90-02, Computer Science De- partment, Australian National University, 1990.
6. R.J. Riebeek, “Halved graphs of distance-regular graphs,” Master's thesis, Eindhoven Univ. of Techn., June 1992.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition