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Abstract. We construct a bipartite distance-regular graph with intersection array{45, 44, 36, 5; 1, 9, 40, 45}
and automorphism group35 : (2×M10) (acting edge-transitively) and discuss its relation to previously known
combinatorial structures.
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1. Introduction

LetG be the perfect ternary Golay code generated by the rows of the circulant(−+−+
+ +−−−+−)11. ThenG is a ternary[11, 6, 5] code. LetΓ be the coset graph ofG, that
is, the graph with as vertices the35 cosets ofG in F11

3 , where two cosets are adjacent when
their difference contains a vector of weight one. ThenΓ is a strongly regular graph with
parameters(v, k, λ, µ) = (243, 22, 1, 2), known as the Berlekamp-van Lint-Seidel graph.
(See Berlekamp, van Lint and Seidel [1], and Brouwer, Cohen and Neumaier [2], Section
11.3B.)

In [2], p. 360, the question was raised whether the complementary graph of the graphΓ
is the halved graph of a bipartite distance-regular graph∆ of diameter 4. In this paper this
question is answered affirmatively: the last two authors constructed such a graph∆. (This
also settles the last open case in Riebeek [6], Chapter 7.)

2. Construction

PutQ := {1, 3, 4, 5, 9}, the set of (nonzero) squares mod 11, andN := {2, 6, 7, 8, 10}, the
nonsquares. Consider in the graphΓ the setD consisting of the following 45 cosets ofG
(we writeu instead ofu+G):

ej , −e0 − ej (j ∈ N)



154 BROUWER, KOOLEN AND RIEBEEK

e0 − ei, ei + e3i, ±(ei − e9i), ei − e7i, −ei − e6i, −ei − e10i (i ∈ Q).

ThenD, as well as each translate ofD, is a 45-coclique, and the point-coclique incidence
graph∆ on cosets ofG and translates ofD is distance-regular with intersection array
{45, 44, 36, 5; 1, 9, 40, 45} and distance distribution diagram

����1 45 1����45

-
44 9����220

-
36 40����198

-
5 45����22

-

v = 486.

All of these properties can be checked easily using GAP [4] and GRAPE [7]. Using
these packages and builtin Nauty [5] we find that the automorphism group of∆ has shape
35 : (2 ×M10), and acts edge-transitively with point stabilizer isomorphic toM10. The
orbit diagram of the point stabilizer is
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v = 486.

3. Structure of the group; related graphs

In order to describe the group of automorphisms more precisely, we have to specify the
representation of2×M10 insideGL(5, 3). The direct factor2 may be represented by±I,
and then it remains to look at the groupH := 35 : M10, the stabilizer of the bipartition of
∆. This group has a centre of order 3, acting fixed point freely on∆. The quotient graph is
a bipartite graphE of valency 45 on 162 vertices that can be found inside the McLaughlin
graphΛ as follows.

Let x, y be two adjacent vertices ofΛ. LetX andY be the sets of vertices ofΛ adjacent
to x but not toy, and toy but not tox, respectively (see also the figure below). Then
|X| = |Y | = 81 andE is isomorphic to the graph with vertex setX ∪ Y , whereX andY
are cocliques, and the edges betweenX andY are precisely those present inΛ. (Thus,E
is not the graph induced byX ∪ Y ; in Λ the setsX andY induce subgraphs of valency 20.
See also Brouwer and Haemers [3], Construction D.)
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A larger graph. Let Z be the set of 81 vertices inΛ nonadjacent to bothx andy. The
graph induced byΛ onX ∪ Y ∪ Z, after switching with respect toZ, is isomorphic to the
Delsarte graph, a strongly regular graph with parameters(v, k, λ, µ) = (243, 110, 37, 60).
If we remove from this graph the edges insideX, Y andZ, we obtain a tripartite graphF
of valency 90 on 243 vertices such that the subgraph induced on the union of any two of its
parts is isomorphic toE. We haveAut(F ) ' 35 : (2×M10).

This latter graph has a triple coverΣ, of course again tripartite, such that the subgraph
induced on the union of any two of its parts is isomorphic to∆. We haveAut(Σ) ' 36 :
(2×M10).

Using [7] this graphΣ can be constructed as follows:

LetA :=


1 0 0 0 0 0
0 1 0 0 0 0
2 2 2 0 0 0
2 2 1 1 0 0
0 1 2 1 2 0
1 1 2 0 0 1

 andB :=


1 0 0 0 0 0
1 1 0 0 2 0
0 2 0 2 2 0
2 0 0 1 1 0
0 1 2 0 1 0
1 1 1 0 0 2

.

LetM := 〈A,B〉 be the matrix group generated byA andB. ThenM ' M10, andM
has orbits of sizes 1, 1, 1, 20, 20, 20, 72, 72, 72, 90, 90, 90, 180 onF6

3. LetN := 〈A,B,−I〉.
ThenN ' 2 ×M10, andN has orbits of sizes 1, 2, 20, 40, 72, 144, 90, 180, 180. The
vector(000001) is a representative of theN -orbitO of size 90. The graphΣ is the graph
with vertex setF6

3, where two vertices are adjacent when their difference lies inO. Now
the graph∆ is the subgraph ofΣ induced on the set of vectors with nonzero last coordinate.
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