ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Distance-Regular Graphs with c i = b d-i and Antipodal Double Covers

Makoto Araya and Akira Hiraki

DOI: 10.1023/A:1008681526048

Abstract

Let Gamma be a distance-regular graph of diameter d and valency k > 2. Suppose there exists an integer s with d le 2s such that c i = b d-i for all 1 le i le s. Then Gamma is an antipodal double cover.

Pages: 127–138

Keywords: distance-regular graph; antipodal double cover; box; brox

Full Text: PDF

References

1. M. Araya, A. Hiraki and A. Juri\check sić, “Distance-regular graphs with bt = 1 and antipodal double-covers,” J. Combin. Th. (B) 67 (1996), 278-283.
2. M. Araya, A. Hiraki and A. Juri\check sić, “Distance-regular graphs with b2 = 1 and antipodal covers,” Europ. J. Combinatorics 18 (1997), 243-248.
3. E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin-Cummings, California, 1984.
4. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
5. A. Gardiner, “Antipodal covering graphs,” J. Combin. Th. (B) 16 (1974), 255-273.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition