On Symmetric Association Schemes with k 1=3
Norio Yamazaki
DOI: 10.1023/A:1008695411797
Abstract
Pages: 73–105
Keywords: distance-regular graph; $P$-polynomial association scheme; circuit chasing technique
Full Text: PDF
References
1. E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin-Cummings, California, 1984.
2. E. Bannai and T. Ito, “On distance-regular graphs with fixed valency, II,” Graph and Combin. 4 (1988), 219-228.
3. N.L. Biggs, A.G. Boshier, and J. Shawe-Taylor, “Cubic distance-regular graphs,” J. London Math. Soc. 33 (2) (1986), 385-394.
4. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer Verlag, Berlin, Heidelberg, 1989.
5. T. Ito, “Bipartite distance-regular graphs of valency 3,” Linear Algebra Appl. 46 (1982), 195-213.
2. E. Bannai and T. Ito, “On distance-regular graphs with fixed valency, II,” Graph and Combin. 4 (1988), 219-228.
3. N.L. Biggs, A.G. Boshier, and J. Shawe-Taylor, “Cubic distance-regular graphs,” J. London Math. Soc. 33 (2) (1986), 385-394.
4. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer Verlag, Berlin, Heidelberg, 1989.
5. T. Ito, “Bipartite distance-regular graphs of valency 3,” Linear Algebra Appl. 46 (1982), 195-213.