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1. Introduction
Let X be afinite setand® (i =0, 1,...,d) be subsets oK x X with the properties that

() Ro={(x,x)|xe X}
(i) Xx X=RU---URy, RNR; =0ifi #j;
(i) 'R = R, forsomei’ € {0, 1,...,d}, where'R = {(X,¥) | (Y, X) € R};
(iv) fori, j,k € {0, 1,...,d}, the number o € X such thaix, z) € R and(z, y) € R;
is constant whenevék, y) € R¢. This constant is denoted kgh

Such a configuratio®’ = (X, {R }o<i<a) is called arassociation schemaf classd on
X. Association schemes with the additional properties

(v) p; = pf; foralli, j,k, and
(vi) foreveryi,i’ =1i,i.e.,R is asymmetric relation

are calleccommutativendsymmetri¢ respectively. Remark that i is symmetric, then
X is also commutative, and that a symmetric association scheme can be constructed fron
any commutative but non-symmetric association scheme bsyttinenetrizatioifil, p. 57].
The positive integek; = pﬂi, is called thevalencyof R;. Itis clear that, for every, the
graph whose vertex set¥and edge setiR;, is ak;-regular graph, and, moreoveri i i,
then it is undirected. We call it th -graph Note that, ifY is a connected component of
the R -graph for some, then) = (Y, {R N (Y x Y)}ica) is also an association scheme of
class/A|—1,whereA = {i | (X,y) € R, X,y € Y}. Ifforanyi with1 <i < d, R-graph
is connected, we say that is primitive.
LetT" be a connected undirected finite simple graph.dsg@ € V (I'), letd(«, 8) be the
distance betweea and . Letd(I") be the maximal distance iR, called thediameter
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of I'. LetTj(@) = {8 € V(I') | 3(«r, B) = i}, and letI'(«) = I'1(«). For vertices
a, B with d(ee, B) = i, let Ci(a, B) = Ti_1(x) NT(B), Ai(e, B) = Ti(e) NT(B) and
Bi(er, B) = Tisale) NT(B). Letci(e, B) = ICi(a, P)I, @i, B) = |A(e, B)| and
bi (e, B) = |Bi(e, B)I. If ci(e, B), ai(e, B) andbj (e, B) depend only on = (e, ),
we sayc, g andb; exist, respectively.I' is said to bedistance-regulaif ¢;, g andb;
exist for alli with 0 < i < d(TI"). Itis clear that a distance-regular graplbgsregular. It
is well known that, ifl" is distance-regular, thel = (V(I'), {Ri }o<i<d)) iS @ Symmet-
ric association scheme (called P-polynomial with resped®ifp whereR, = {(X,y) €
V() x V() [a(x,y) =i} (0 <i <d()).

In the study of association schemes, the following problems seem very important.

(1) Determine the graphs which can be fRegraphs of an association scheme.
(2) By giving a regular graplt, determine the association schemes such hit the
R; -graph for somé.

In this paper, we study on the above problems, particularly (1), in the case when the case
X is symmetric and” is a connected cubic (3-regular) graph. We remark th&;-ifjraph
is a connected 2-regular graph, i.e., a polygon, then we easily se# ika®-polynomial
with respect toR;.

We shall show the following.

Theorem 1.1 If X = (X, {R }o<i<d) iS @ Symmetric association scheme such that the R
graphT is a connected non-bipartite cubic graphenX’ is P-polynomial with respect to
R;.

This immediately implies the following.

Corollary 1.2 If X = (X, {Ri}o<i<q) iS @ primitive symmetric association scheme with
ki = 3, thenX is P-polynomial with respect to;R

Remark that cubic distance-regular graphs have already been classified by several author
(see]5, 3, 2]). So, bythe previous corollary, we have a classification of primitive symmetric
association schemes wikh = 3.

2. Ri-graph

LetX = (X, {R }o<i<d) be a symmetric association scheme of cthsBor verticesy, 8 €
X, letd(e., B) be the index such that, B) € Ry, 5. LetRi(@) = {8 € X | d(a, ) =1i}.
Pick anyt with 0 <t < d and letl" = (X, R;) be theR;-graph. For a pair of vertices
x,y)inR, Pji’l(x, y)={ze X|(x,2) € Rj, (2 y) € R},and letC(x, y) = Ci(x, y) =
Coey % ¥), AX, Y) = A(X, Y) = Ay (X, Y), BX, Y) = Bi(X,Y) = Byy)(X. ¥).
Lete(x,y) = G(X, Y) = Cixy (X, ), X, y) = & (X, ¥) = &y (X, ) andb(x, y) =
B (X, y) = byx,y) (X, ¥).
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Lemma 2.1 Let(X, {Ri}o<i<q) be a symmetric association scheme of class d. Pick any
twith1l <t < d, and letI" be the R-graph.
For T, the following hold.
(1) For any pair of verticesr, 8 € X, d(e, 8) depends only of(a, B).
In particular, if " is connectedthere exists a surjection

0:{0,1,...,d} > {0,1,...,d(D)}

such thatforalli withO <i <dandforallxy e X with d(x, y) =i, 90X, y) =
().

(2) Forany pair of vertices, 8 € X, c(a, B), a(x, ) and (e, 8) depend only oA («, B).
In particular, c(«, B) = c(B, «), a(x, B) = a(B, o) and (e, B) = b(B, «).

(3) Leta, B and y be vertices in X withy € B(a, 8). Then €a, 8) < c(a, y) and
b(a, B) = b(e, y).

Proof: Straightforward. ]

Remark From (1) and (2) in the previous lemma, we see thad, # d(T), i.e., if ¢ is
bijective, therT" is distance-regular. The converse does not necessarily hold.

We write&;, & andb for the parameters as in Lemma 2.1 (2).
From now on, lett’ = (X, {R }o<i<a) be a symmetric association scheme of cthsach
that R;-graphr is a connected cubic graph.

Lemma 2.2

(1) Let a exists and a= 0. Then there exist no vertices %, z € X such that(z, x) =
3z, y)=t+1,3(x,y)=1landthatgz, x) =c(z, y) = 2

(2) Let j, j2 be integers such that(j1) = ¢(j2) — 1, pf’j, = 2, and that g'; = 0. Then

psz =0.
Proof:

(1) Suppose not. Note that, by Lemma 2.12¥, z) = c(y, z) = 2. Ask; = 3, there must
exist a vertexu € Ciy1(X, 2) N Ci11(Y, 2). However, this implies thay € A (u, X),
which contradicts thad; = 0.

(2) Similar to (1). m|

Lemma 2.3

(1) Leta_», a exists and @, = a; = 0 for some t> 2. Then there exist no vertices x
and z such thad(x,y) =1, 9(z,x) = d(z,y) =t —1land G_1(z, X) = ¢_1(Z, y) =
br-1(z,X) = bi-1(z,y) = 1. _ _

(2) Let ju, j2, j3 be integers such that(ji) = ¢(j2) — 1= ¢(j3) —2and pf;, = py’}, =
pr’j, = 1. Then g #Oor p’, #0.
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Proof:

(1) By Lemma 2.1 (2)ci-1(X,2) = ¢-1(Y,2 = 1. Let{u} = Ci_1(X,2) and{v} =
Ci_1(Y, 2. We see thati # v. Otherwise, we havg € A;_»(u, x), which contradicts
thata;_» = 0. Sincek; = 3 andb_1(X, 2) = bi_1(X, u) = 1, there exists a vertex
in B(x, 2) N B(x, u). However, this implies thag € As(w, X), which contradicts that
a; = 0. Now we have the assertion.

(2) Similarto (1). m|

For the convenience, we number some indices of relation. |f|£tii #0,i¢{0,1}} =
1, letpi, #0. If#i | pf; #0, i & {1,2}} =1, letpf; # 0. We repeat this, and let
s be the maximal number such that, fox s, #j | pilfjl #0, jegl{i—2i-1}=1.
Note that, for every vertex in X and for anyi with 0 <i < s, I'j (@) = R (@), and that
G, a, b exist(0<i <5s).

In this paper, thdistribution diagramwith respect toR; acts an important role. For the
definition of it, see [4, Section 2.9].

It is well known that, if the distribution diagram with respectRgis linear, i.e.s = d,
thenT is distance-regular with diametdr See [4, Proposition 2.9.1 (ii)].

Lemma 2.4 Ifs=d, thens> 2.

Proof: Supposes = 1. Letx, y be vertices inX with A(X, y=1z¢€ Pll,z(x, y), and
u € Pi5(x,y). Note thatp}, = p1 3 = 1. As P{5(x, 2) # 0, d(z, u) = 3. However, this

implies thaty, z € P{5(x, u), which contradicts thap} ; = 1. Now we have the assertion.
m)

Lemma 2.5 Lets#d. Then(c,a,bj)=(1,0,2) for0<i <s.

Proof: If s # d, then we easily havbs = bs = 2. Henceés = ¢ = 1. Therefore we
have the assertion by Lemma 2.1 (3). |

The following lemma is clear.
Lemma 2.6 T is bipartite if and only if @ exists and a= 0 for any i withO <i < d(T").
Let o and B be vertices inX with (e, B) = i. Let(ax) = {X1, Xp, X3} and'(B) =
{y1, Y2, ¥a}. Let M (e, B) be the 4x 4-matrix whose rows and columns are indexed by
(T'(x) U {a}) and(I"(B) U {B}), respectively, such that
(Mi(@. B)uy = d(u,v) — s,
whereu € I'(@) U {«} andv € T'(B8) U {8}. We identify this up to the ordering of indices.

If Mi(a, B) does not depend on the choice(af 8) € R, we write M; = M; (e, 8), and
sayM; exists.
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Supposes # d, and Ietp1 o1 = p1 s+2 = 1. Leta, B be vertices inX with i, B) =
s. LetI'(e) = {X1, X2, X3} and L'(B) = {y1, Y2, y3l. Ascs = 1, we may assume that
a(a Y3) = 8(;3 X3) =s—1and thaﬁ(xg, y3) =S — 2.

ThusMs(«, B) can be written as follows:

Y1 p Y2 Y3
X1 il 1 i2 0
o 1 0 2 -1
X2 i4 2 i3 0
X3 0 -1 0 -2

We may assume that8 i1, i,,i3 < 5.
We have the following lemma.

Lemma 2.7 Lets#d. For Ms(«, ﬁ) as abovethe following hold.

@) pyth. it pEELL. PIRSL,. PEEY,. piEA,, are all nonzero. In particulariz = is.
(2 #jefl,2}|ij=0=C1—land#{j €{2,3} |i; =0} =Cs0 — L.

(3) Ifio =1, theni = 2. Similarly, ifi, = 2, thenik = 1.
(4) Ifiy=2,thenb =1orizg= 1. Similarly, ifi3 =1, theniy = 2ori, = 2

Proof:

(1) The first claim is clear. The second immediately follows from 8; = ZJ -0 pi’jl.
(2) Asys € PIT(x1, B) N PS12(x2, B), itis clear.

(3) Leti, =1. Thenwe see thate Pfs+2(x1, ¥2), SO fchqtpifsiz £ 0. Hencd3f5+2(ﬂ X1)
# ), soi; = 2. The latter assertion is proved similarly.
(4) Similar to the proof of (3). m]

By the same argument as in the previous lemma, we have the following lemma.

Lemma 2.8 Let ji, j2, j3 be distinct integers such that(j1) > 1, ¢(j1) = ¢(j2) — 1=
¢(js) — 1, and that '}, = py’;, = 1. Then the following hold.

(1) If ¢, = p1J = 1, then there exists an integej (£ j1) such that both ﬁ and p{
are nonzero. ‘ ‘
(2) If ¢, = py*},, and if there exists no integes {#j1) such that both §;, and pf°;, are

nonzero then th > 2.

Proof:

(1) Letjobetheintegersuch thpﬂ = 1andthat(jo) = ¢(j1) — 1. Letw, B be vertices

in X with d(a, B) = j1, T(@) = {x1, Xz, X3}, and let'(B) = {y1, Y2, y3}. Then we
may assume tha¥l;, («, B) is as follows:
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Y1 B Y2 Y3
X1 * jo—5s * *
o jo—s ji—s ja—s jo—s
Xo * ja—s * *
X3 * jo—s * *

AsCj, = ijl = 1, we haved (x1, ys) = j1andd(xy, y2) # j1. Hence we may assume
thatd (e, Y2) = ja # j1. Itfollows thaty € P, (8. x1) andx; € P, (a, y2), so that

pszx ;é 0 andpfh # 0.
(2) It follows directly from (1). m|

By Lemma 2.7, we see thét, io, i3) is one of the following:

(0,0,0),(0,0,2),(0,0,3),(0,2,1),(0,3,0), (0,3,2), (0,3,3), (0,3,4), (1,0, 0,
(1,0,2),(1,0,3),(1,2,1),(1,3,0),(1,3,2),(1,3,3),(1,3,4),(2,0,1), (2,1, 0,
2,1,1),2,1,2),(2,1,3),(2,2,1),(2,3,1),(3,0,0), (3,0,2), (3,0, 3), (3,0, 4),
3,2,1),(3,3,0,(3,3,2,(3,3,3,(3,3,4, (3,40, (3,4,2,(3,4,3), (3,4, 4,
3,4,5), (4,3,4).

Note that, for example3, 4, 5), (3,5, 4), (4, 3, 5) and (4, 5, 3) can be regarded as the
same type.

Lemma 2.9 Let(iy, i, i3) be one of the above. Then the following hold.

(1) Ms exists except the cas€iy, iz, i3) = (0,3,0), (3,0,3),(1,2,1),(2,1,2), (3,4,3)
or (4,3,4). Moreover (i1, i2,i3) = (0,3,0) or (3,0, 3) if and only if (p7t*, pitls,
P2 Py = (21,2, 1), (i1,i2.i3) = (L. 2, D or (2, 1, 2)ifand onlyif (p3Eh, p3hh,.
PiEho PR iy PiEa) = (L1111, 1), and(iy. iz is) = (3.4, 3) or (4,3, 4)
If and Only If(piglv pi’:;.gs pi;};_4’ pi‘;za pi;i\?,v p:;.zt,_zl) = (17 la 17 1’ 19 1)

(2) Ifiy # i3, then(iq, iz, i3) and (i3, iy, i7) can be regarded as the same typehere for
=123,

i i ¢ (12,
in=12 ifij=1,
1 ifij=2

Proof:

(1) Straightforward. For exampleij,i», iz) = (0, 3,4) if and only if (pitl, Pf;ieﬂ

pre Piis PI) = (2 L1 L 1) |
(2) Itis clear from the symmetry of indices of relations. m|
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By (1) in the previous lemma, the type 61, i, i3) can be regarded as 4f.
Thus, ifs # d, the type ofX is one of the following.

(I) (i1,i2,i3) =1(0,0,0),(1,2,1)0r(2,1,2),(1,3,2),(2,3,1),(3,3,3),
(0,3,0)0r (3,0, 3),

(MA) (0,2,1),(0,3,3), (2,1, 1),
(1B) (0,0,2),(1,0,2),(1,0,3),(20,1),
(1) (0,3,2),(3,3,2),
(lID) (0,0,3),(3,0,4),(0,3,4),(3,3,4),(3,4,3)0r (4,3, 4,

amy (1,3,4),

(v) 2,1, 3),

V) 3,4,5).

In the rest of this paper, we shall show thatl"ifs non-bipartite, ther’ is not of any
type in ()—(V).

3. Circuit and profile

For fixed verticesi, v € X with (u, v) € Ry, let Dj = D} (u, v) = P (u, v). For subsets
A, Bin X, lete(A, B) be the number of edges InbetweenA andB. Forx € X, write
e(x, A) = e({x}, A).

We easily have the following.

Lemma 3.1 Lets# d and let(u, v) be any pair of adjacent vertices. Then the following

hold.

(1) D} #¢ifandonlyif g ; 0. In particular, D™ # ¢ (1 <i < s+ 1), DS,, # ¥,
andD =d(1<i <s).

(2) Forli<i <s,eD/ D™ =eD/ ™ D_,)=eD,,, Dl ) =0.

(3) & D§+2’ D§+2) =0.

(4) Foreveryxe D, (1<i <s), e(x,D|™) = 1.

(5) For every xe DS, ,, e(x, D§™1) = 1.

s+2° _
(6) Foreveryye D"t (1<i <s—1),ey,Dl,) =2
(7) Forevery ye D$%, e(y, DS,,) = e(y, DS, ,) = 1.
Proof.  Straightforward. m]

S+i
Forx € D}, let

Ej00 = {d", " [ e(x, DE}) # 0},

whereD]' = D]'(u, v) for a given pair of adjacent verticgs, v) in T". If E‘j (xX) depend
only oni andj, we write E}, = E} (x).
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In this paper, &ircuit in T is defined as a connected induced 2-regular subgraph.

Lemma 3.2 Lets# d and let{Xo, X1, ..., Xi—1, Xt = Xo} be a circuit of length t irT".
Then for anyl jwitho<i <t-1 and withl < j <'s, Xi4j € D] 1(Xi, Xi+1) and
Xi—j+1 € D (xl, Xi+1), where indices are given by modulo t. In particular> 2s + 2.

Proof: Immediate from Lemma 3.1. O

LetC = {Xo, X1, ..., %} be a circuit of lengttt in I". Note thatx,,s € Dg_;(Xy, xu+1)

and Xy4t—s+1 € DS~ (xu, Xut1), Where indices are given by moduloIf x,,s:1 € D"

S+j
(Xus Xu41), - - - » Xugt—s € Dg +,‘121 (Xu» Xus1), we call

s+|1
0O ji1 j2.. jt2s (=D
(=1 1y Ip...lips O
the profile of C with respect taxy, Xy+1). Note thal; = j;_»s = 0. Let
oc(Xu) = (j1, J2, - -+, Jt-2),
and, fore;, ...,e, € {1,2,...,t — 2s}, let

ocXui €L ... &) = (jers - -» Jen)-

4. Typel, Il

Lemma 4.1 Suppose that’ is of typel. Thenr" is distance-regular.

Proof: Supposethais, iz, iz) = (0, 0, 0). Thenwe have that, for evesye X, I's;1(x) =
Rs41(@) U Rsy2(a), d = s+ 2 and thats,; = pjs" = p;t? = 3. This implies thal" is a
bipartite distance-regular graph withil") = s + 1 and with the intersection array

(3.2,...,21,...,1,3).

Similarly, if (i1,i2,i3) = (1,2, 1) or (2, 1, 2), thenT is a distance-regular graph with
d(I') = s+ 1 and with the intersection array

3,2,...,2,1,...,1}.
Suppose thaii, i, i3) = (0, 3,0) or (3,0, 3). Then we see thdts,»(«) = Rs 3(x) for
everya € X, and that, a, andb; exist for0< i < s+ 2. Note that(Cs, 1, asy1, bs11) =
(2,0, 1) and that

_ _ s+3  __ s+3
Ksy1 = Ksy2 = Ksy3 - Pisy1 = Ksy3 - P1si2s
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thatis,Csi2 = Piis, + Py, = 2. If d = s+ 3, thenpyt3 ; = 1, andr is a non-bipartite
distance-regular graph with(T") = s + 2 and with the intersection array

3.2,...,21:1,...,1,2,2.

Letd > s+ 3 andpfgiwrl #0@3B <i <d-s—1). Then we have thdfs,i(a) =
Rsiivi(e) B3 <i <=d—-s—1)foreverya € X, and thatl" is a distance-regular graph
with d(I") = d — 1. Moreover, by Lemma 2.2 (Zﬁpf,d_l, P(f,d) = (3,0). Henceg; =0
for0 <i < d(T") andT is bipartite. In the cas@, i,, i3) = (3, 3, 3), the proof is similar.

Suppose thatii, iz, i3) = (1, 3,2). Then we see thdfs,»(¢) = Rsi3(x) for every
a € X, and thatg, g, bj existfor0< i < s+ 2. Note that(Cs;1, as11, bsy1) = (1,1, 1)
andcsi2 = pit3, + pitd, = 2. Note that there exist, y, z € X such thath(z, x) =
9(z,y) = s+ 1andd(x,y) = 1. Sincecs;; = bs; = 1 andag = 0, it follows from
Lemma 2.3 (1) thads,» = pi*si?, =1, so thafl" is a hon-bipartite distance-regular graph
with d(I') = s+ 2 = d — 1 and with the intersection array

{3,2,...,2,11,...,1,2}.
The proof for the cas@, iy, i3) = (2,3, 1) is similar. O
Lemma 4.2 Suppose that’ is of typel. ThenI' is bipartite.

Proof: By the list of cubic distance-regular graphs in [3],(if,i2,i13) = (1,2, 1) or
(2,1, 2), thenT" has the intersection array

{3,2,1,1},
which contradicts Lemma 2.4. a
If (i1,i2,i3) = (0,3,0),(3,0,3) or (3,3,3) andd = s+ 3 (see the proof of Lemma
4.1), then we cannot find the appropriate graphs in the list in [3].
Suppose thati1, iz, iz) = (1, 3, 2). Then, by the listin [3]I" has the intersection array
{37 21 27 1; 17 1’ 17 2}1

so thats = 2 andd = d(I') + 1 = 5. We need two sublemmas as follows.

Sublemma 4.2.1 Suppos€is, iz, iz) = (1,3,2). Then M ; and M, exist as follows
respectively.

Y1 B Y2 Y3 Y1 B Y2 Y3
x2 | 0 | 1| 3 1 xx | 0 2 3 2
o 1 1 3 0 o 2 2 3 0
Xo 3 3 1 2 X2 3 3 2 1
X3 1 0 2 -1 X3 2 0 1 -1
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Proof: Leta, 8 € X with d(e, B) = S+ 1, Ri(a) = {X1, X2, X3}, and letRy(8) =
{y1. Y2, y3}. Ascsi1 = pit' = 1, we may assume thae, y3) = 3(B.%X3) = s and
é(xg, y3) = s—1. As pi*sil = pitts = 1, Ietﬁ(a Vi) = 5(,3 x1) = s+ 1 and
a(a Vo) = 8(;3 X2) =S+ 3. As pﬁil =0, we hava?(xl, Y3) = 8(x3, yi1) =s+1and
(X2, y3) = 3(xa, Y2) = S+ 2. As p;’ = 0, we haved(xy, y2) = 9(Xz, Y1) = s+ 3.
This immediately implies thai(xl, Vi) = sanda(xz, y2) = s+ 1. Thus we see thallg, ;
exists as above.

Similarly, for Ms,». |

Sublemma 4.2.2 Supposei, iz, i3) = (1, 3, 2). Then the following hold.
(1) E2={(-1.0), (1 1), (2 3)}.

(2) E2=1{(-1.0), (1, 3), (2, 2)}.

(3) E1 ={(0,1), (1, 0), (3,3)}.

(4) E3=1{(0,1),(2,3),(3,2)}.

(5) E3 =1{(0,2), (1 3), (3, D}.

(6) EZ=1{(0.2).(2,0),(3,3).

(7) E3=1{(1.1.(22,(33).

Proof:

1) Letx € DI, ,. Then, forMs, we may assume that= «, v = x; andx = 8. Then
S+1°

we see thay; € DS, y; € DSJ’1 andy, € ngg Thus we have the assertion.
(2)—(6) Similarto (1).
(7) Letx € D3, As pit3, = pitd, = pit3, = 1, we may assume that

E3X) = {(L, j0), (2, j2), 3, j3)} = {(ja, 1), (Js, 2), (j&, 3)}.

From(1) to (6), it must hold thatj; = j; =1, j, = js = 2 andj; = jg = 3, as desired.
O

Now we shall show thatitis impossible that, i», i3) = (1, 3, 2). We use circuit chasing
technique. Le€C = {xg, X1, ..., X9, X10 = Xo} be a circuit of length2+ 6 = 10 inT such
that the profile with respect 1<, X;) is as follows:

0113 310
01 3 3110

_ Note that the existence of this circuit is guaranteed by Lemma 3.1 and Sublemma 4.2.2,
d(Xo, X3) = S+ 1 = 3, and thak, € DS*1(xq, X2) = D3(Xy, X2). By Sublemma 4.2.2 (1),
(4) and (3), we easily have that the profile@fvith respect taxy, Xo) is

01 3 3110
0220110
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Similarly, the profile ofC with respect tax,, x3) is

0 220110
0 22 3 320

This implies that) (xs, Xo) = S + 2 = 4, which is a contradiction. Thus we have the
assertion.

Finally, we shall show that the cagg, i», i3) = (2, 3, 1) is impossible. In this casé,
has the same intersection array as the one in the(case, iz) = (1, 3, 2). For the proof,

we need the following.

Sublemma 4.2.3 Supposéi, iz, i3) = (2, 3, 1). Then the following hold.
1) E) ={(-1.0), (L2, (23}

(2) E={(-10),(13), (2 D}

(3) E3 =1{(0,1), (2,0), (3,3)}.

(4) E} ={(0.2),(2.3), (3, 1)}

(5) E2={(0,1), (1, 3),(3,2)}.

(6) E3 ={(1.2), (2.1, (3,3}

Proof: Similar to the proof of Sublemma 4.2.2. m|

We use circuit chasing technique again. Cet {Xg, X3, . .., Xg, X10 = X0} be a circuit
of length 2 4+ 6 = 10 in T such that the profile with respect ¢y, X1) is as follows:
01 2 3 310
01 3 3 210
Note thaté(xo, x3) = s+ 1 = 3. By Sublemma 4.2.3, we see that the profil&€afvith
respect taxz, X3) is
0 210210
0 213 320
This implies thalﬁ(xg, Xo) = S+ 2 = 4, which is a contradiction. Thus we have the
assertion.

Now we conclude the proof of Lemma 4.2.

Lemma 4.3 Itis impossible thatt is of typellA.

Proof: Suppose thafis, i»,i3) = (0,2,1). Then we see thapS'' = 2 and pj}

_ 1542
prt? = pi; = 1. By using the formuld - p|; = ki - pf ;, these imply thaks

2 -ksi1 = Ksy2 andks, 1 = ks 2. These are impossible.
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Suppose thali, i2. i3) = (2,1, 1). Then we see thas;ti, = 2 andpjt! = pitl, =

pigz = 1. These are also impossible.
Suppose thatiy, i2,i3) = (0, 3, 3). Then we see thql)i‘;l = pf;fr3 =2 and piﬂgia -
pitz = 1. Hence we havés = 2ks;1 = Kst2, Ker1 = Ksys- piﬁl’ and Xgp =

ks+3- PIh,. These imply thapyt}, = 4p7t3, > 4, which is a contradiction. O

Lemma 4.4 ltis impossible thatt' is of typellB.

Proof: In this case, we have verticasy, z € X such thato(z, x) = d(z,y) = s+ 1,
(X, y) = 1 and thatc(z, x) = ¢(z, y) = 2. On the other hand, we hagg = 0, which
contradicts Lemma 2.2. O

Lemma 4.5 Itis impossible thatt is of typellC.

Proof: In the case(iy, i2.i3) = (0, 3,2), we see thapjt' = 2 andpit, = pi¥? =

Py, = Piiis = 1. These imply thaks = 2 ksi1 = ksy2, Ks1 = Ksi3 - pr3, and that

ksi2 = Kst3 - PIh3,. Hence we havepit?;. pit3,) = (1,2) andpit3, = 0. Inthe case

(i1.i2.13) = (3,3,2), we see thap}tl, = 2 andpit' = pit? = p}i%, = piiis = 1.

These imply thatpst? ;. pit3,) = (2. 1) and thatpjt}; = 0. Note that, in both cases,

@(s+3) = s+2andpst3, = 0. However, apst? = p$t2, = pSt2. = 1, this contradicts
1,s+3 1s 1,s5+2 1,s+3

Lemma 2.3 (2). O

Lemma 4.6 LetX be of typdID. Thenl is bipartite.

Proof: Let (i1, iz, i3) = (0, 0, 3). Note thatpjt}, =3, pt?=2 and that; =0 for 0 <
i <s+1.BylLemma 2.1 (3), we have that, for every vertieeg € I" with 9 («, ) >s+1,
c(a, B) > 2. Therefore, by Lemma 2.2 (1), we haayye=0fors+ 1 <i < d(I'). It follows
from Lemma 2.3 thal is bipartite. In the cas@s, i»,i3) = (3,0,4), (3,4,3) or (4, 3,4),
similarly.

Let (i1,i2.i3) = (0,3,4). Note thatks = 2ks;1 = ks42 by counting, and thap$t3 .
PyES 2. PIL}, are allnonzero. We easily hakg 1 = ksis- P>, andks,z = kspz- pha,,
which imply that(p33 ;. pit3,) = (1, 2). Hence, by Lemma 2.8 (2p;t}, > 2. Itfollows

from Lemma 2.2 thar is bipartite. In the caséi, i», i3) = (3, 3, 4), similarly. O

5. Typelll
In this section we show the following lemma.

Lemmab5.1 Itisimpossible thatt is of typelll.

Note that¥’ is of type Il iff pi! = pi%iy = Pisis = PiE° = pitis = Piiis = 1.
By the same argument as in the proof of Sublemma 4.2.1, we easily sédsthdt, 1,

Ms2 exist, and can be written as follows, respectively.
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Vi| B |Y2| V3 Yi|B|Y2| V3 Vi |[B|Y2| V3
X1 | 1 1 (3|0 X9/ 0]1] 3 1 X1 | 313] 2 1
a1 0]|2]|-1 a| 11130 a|3]2(4]0
Xo| 3|1 2 (4|0 Xo| 3131 2 Xo| 214 ¢ 2
X3! 0| -1(0]|-2 X3! 1|10|2]|-1 Xx3| 10| 2]|-1

By these, we see that’, = pit3, = pitl, = Landpitl, > 2. Aspiti, =0, it
follows from Lemma 2.2 (2) thap;t}, = 0, soe = 2 or 5.

Lemma 5.2 Suppose that X is of typd . Then the following hold.

1) E?={(-1,0), (L 1), (2 3)}.

(2) E? ={(-1.0), (1, 3), (2, 9}.

(3) E} ={(0,1). (1,0, (3,3)}.

(4) E3=1{(0,1), (3,3, (4,2}

(5) E3=1{(0.2),(1,3), (3 1}

(6) E3 =1{(1.1),(23),(32).
{0,2),(3,2,(4,2} if piti, =3,

(7) 2:{ : erI s+4
{(0,2),(3,2,45) if piii,=piss+1=2

Proof: Similar to the proof of Sublemma 4.2.2. m|

Proof of Lemma5.1: We consider two cases;= 2 or 5.

Case l.e =5,i.e, pit}, =2andpii =1

LetC = {Xo, X1, X2, ..., Xos14, X2515 = Xo} be a circuit of length 2+ 5 in " such that
the profile ofC with respect taxo, X1) is as follows:
0113 20
01 3 310
Note that the existence of such a circuit is guaranteed by Lemma 5.2 (1), (3), (6) and (4).
By using circuit chasing technique, the profile®ivith respect taxo, X1), (X1, X2), . . .,

(Xs, Xg) are tabulated as follows:

0 1
0

O
oON W w
OFrRr wwN
ONWRPrRo
OCrWwro
PR wNnOo
WwER o
W N o
]
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where theith and(i + 1)th rows indicate the profile of with respect to(x_1, X;). We
see that the profile with respect®g;, Xs) is the same as the one with respeati@ x1). It
follows that 2+ 5 = 0 (mod 5), i.e.s = 0 (mod 5).

LetC’ = {Yo, Y1, V2, - . ., Y2su6, Y2s17 = Yo} be a circuit of length 2+ 7 in " such that
the profile ofC’ with respect tayo, y1) is as follows:

0 2332420

01102310

Then we see that the profile with respectyg, ys) is the same as the one with respect
to (Yo, Y1) This implies that 8+ 7 = 0 (mod 5), i.e.s = —1 (mod 5), a contradiction.

Now we have the assertion in Case 1.

Case2.c =2 ie.,pj5, =3
LetC = {Xo, X1, X2, ..., X2s15, X2s16 = Xo} be a circuit of length 2+ 6 in " such that
the profile ofC with respect taxo, X;) is as follows:
0132 420
0242310
Note thats,» € D§*2(xq, X2). By Lemma5.2 (2) and (7), we see thxgts € D5 (xq, X2),
andxsi4 € DIF3(Xe, X2) U DIE (X1, X0). Suppose<s+4 € DM4(x1, X2). Then{xo, Xo} C
Pf:+4(x1, Xs+4). However, this contradicts thapi 514 = 1. Hencexsys € DS+3(X1, X2).
Thus, by using circuit chasing technique, we find the profile with respes;ixs) is the
same as one with respect(x, x;). Hence 2+ 6 = 0 (mod 4), i.e.s =1 (mod 2).
LetC' = {yo, Y1, V2, ..., Yos13, Yosra = Yo} be a circuit of length 2+ 4 in T" such that
the profile ofC’ with respect tqyo, y1) is as follows:
02420
0 2310
By using circuit chasing technique, we easily see that the profile with respggt i)
is as follows.
01320
0 24 20Q
Notethatys,4 € D§I§(yz, y3) andys,s € Ds+4(Y2, y3). Letzy € I'(Ysi5) N Ds+2(YZ, Y3)
andz, € T'(z1) N DS+3(y2 y3). Let{z, 73, ..., Zs:3 = Y2} be the shortest path between
Z, andy,. Then, for the circuifys,, ys, .. y3+5, 21,2y, ..., 2Zs13 = Yo}, the profile with
respect to(yz, y3) is the same as the one Gfwith respect to(xo, X1). Hence we have

71 € DZIE(Ya, Ya). AsYsys € DSI5(ya, ya), We haveys g € DET2(ys, ya). Thus the profile
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of C’ with respect tqlys, y4) is as follows:
0 2420
0 2420

Note thatysys € DZI5(Ys, Ya), Ysts € DZ{4(ys, Ya) and, by Lemma 5.2 (2)ys;6 €

Dt 3(ya ¥s5). Letur € T'(Ysie) N DZI3(Ys, Ya), @nd let{us, Uz, ..., Uss1, Y4} be the
shortest path betwean andy,;. Note thatus,; # y5 asés;» = 1. Now we see that,
the profile of the circuifys, Y4, Usy1, - - ., U1, Ysi6, Ysi7, - - - » Y3} With respect tays, ya) is

the same as the one Gf with respect tay,, y3). Hence we havgs,; € Dgﬁ(y4, Usi1).
Since(Ys, Vsi7) € Rsi2, We have(ys, Ysi17) € Rs 3. Thus the profile o’ with respect to
(Y4, Ys) is as follows:

02420
0 23 10Q

and we find that this is the same as the one with respegioto/1). Therefore, we have
2s+4 = 0(mod 4), i.e.s = 0 (mod 2). This is a contradiction. Now we have the assertion

in Case 2. O

6. TypelV
In this section we show the following.
Lemma 6.1 Itisimpossible thatt is of typelV.

H ; 1 1 1 2 2 2
Note that¥ is of type IV iff pit' = piii, = i, = pis° = Pt = Pl = 1.

We easily see thatls, Mg, 1, Mg, o exist, and can be written as follows, respectively.

Yi| B | Y2| Y3 Yi|B|Y2| Y3 Yi|B|Y2]| ¥s
X1 | 2 1 1|10 X1/ 1]1]0]| 2 X1 011] 2 1
a1 0]|2]|-1 a| 1120 al| 1230
X2| 1] 2 3|0 Xo| 012 3 1 Xo| 213 ¢ 2
X3/ 0| =10 (-2 X3/ 210 1]-1 X3 110 2]|-1

Note thatp$t3, > 2. As pjtZ, = 0, it follows from Lemma 2.2 (2) thap;t3 ; = 0, so
thate = 2 or 4.

Lemma 6.2 Suppose that’ is of typelV. Then the following hold.
1) B} ={(-10.(12), (2 D).

(2) B9 ={(-10. (1 1. (23)}.

(3) E;=1{0,1),(1,0),(23).

(4) E1 ={(0,2),(1, 1), (20}
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, |10,2,@,2,@32} if pj3,=3
(5) Es= e s43 s+3
{(O, 2),(1,2), G, 4)} if p1,5+2 = p1,s+4 +1=2.

Proof: Immediate fromMg, Mg, 1 and Mg, . O

Proof of Lemma 6.1;: We consider two cases;= 2 or 4.

Case le =4,i.e,pjtl, =2andpit, = 1.

By applying circuit chasing technigue to two circuits having the following profiles:

0110
0210

and

01120
0 2 3 2 Q

we have 2 + 3 = 0 (mod 3) and 8+ 4 = 0 (mod 3), respectively, a contradiction.

Case 2. =2ie,pitl, =3.

Let C; = {Xg, X1, X2, . . ., X2s14, X2s4+5 = Xo} be a circuit of length 2+ 5 in " such that
the profile ofC; with respect taxp, X1) is as follows:

0 23 210
023210

Note thatxs, 3 € ngg(xl, X2). By Lemma 6.2 (5), we see that, 4 € ngf(xl, Xo) U

2 2 2
D35(X1, X2). SUPPOS&s;4 € DIIT(X1, X2). Then we see thdko, X2} C PrEr; (X1, Xst4),
s+2

which contradicts thapifsil = 1. Hence we havés 4 € D 3(X1, X2). Then the profile

with respect taxy, Xo) is

023210
0 23210
which is the same as the one with respeabd x;).
Similarly, if C2 = {Xg, X, ..., X 4, X555 = Xg} IS @ circuit of length 2 + 5 such that
the profile with respect tox;, X;) is
012320
0123220
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then the one with respect &}, ;) is also as above.

LetCs = {Yo, Y1, Y2, - - ., Yos+3, Yosta = Yo} be a circuit of length 8+ 4 in T such that
the profile with respect toyy, y1) is as follows:

0 23 20

0 2 3 20

Note thatys,s € DZ{3(Yo. Y1) N D31 Vo). Letur € T'(Ysis) N DS5(Yo. y1) and
u, e '(up N D;H(yo, v1). Let{u,, us, ..., Usi1, Yo} be the shortest path betweenand
Yo. Then the profile of the circuityo, Y1, ..., Ysi3, U1, Uz, ..., Usi1, Yo} With respect to
(Yo, Y1) is the same as @, with respect taXxg, X1). Hence we hava; € Djﬁ(yl, ¥2), SO
thatys 4 € ng[f(yl, y2). Thus the profile o3 with respect tays, y») is

0 23 20
02110
By Lemma 6.2, we easily see that the profile€afwith respect tqys, y3), (ys, Y4) are

the following:

0 2
0

O R
N R
W N o

0
2 0

Note thatys;s € DST5(y3, ¥a) N DE3(Ya, ¥6). Letvi € T'(ysye) N D3 (ys, Ya), and
let {v1, v, ..., vsi1, Y4} be the shortest path betweepandy,. Note thatd(ys, Ysi6) =
9(vsi1, Ysi6) = S+ 1. Ascsy1 = 1, we haveys # vsi ;. Now we can find that the
profile of the circuit{ys, Y4, vsi1, - .., V1, Ysi6, - - - » Y3} With respect tdys, ya) is the same
as of C3 with respect to(yp, y1). Hence we havé(vsH, Vsi7) = S+ 1. This implies
thaté(yg,, Vsi7) = S+ 3,1.€.,V517 € Dgig(y4, ys). Thus the profile ofC3 with respect to

(Ya, ¥5) is
0 23 20
0 2 3 2Q
which is the same as the one with respeaty y1). Therefore 2 + 4 = 0 (mod 4), i.e.,
s= 0 (mod 2).
LetCy = {20, Z1, . . ., Zos15, Z2s16} De @ circuit of length 2+ 6 such that the profile with
respect t@y, z; is
0112 3 20
0 232110

Note thatzs,3 € DI5(20, z1) N DT3(21, 22). Let{zeys, Uy, ..., Us, Zo} be the shortest

path betweeres,; 3 andzg. Then the profile of the circuitzg, z1, ..., Zsy3, U1, ..., Zo}
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with respect ta(zg, z;) is the same as df3 with respect ta(ys, y4). Hence we see that

up € ngg(zl, 2p), sothatzs 4 € Ds+l(zl, 7). Thus, by Lemma 6.2, the profile 6%, with

respect tazy, zp) is
0232110

0210210

By Lemma 6.2, we immediately have that the profiléafwith respect taz,, z3) is

0210210
01 2 3 210

Note thatzs, s € DS+1(23, Z4) andzs g € DS+3(22, z3) N DS+2(23, 7). Letvy € T (Zsi6) N
Djﬁ(zg, z3), and let{vy, ..., vs11, Z3} be the shortest path betweenandz;. Let {z,s,
w1, Wo, ..., Ws—1, Z2} be the shortest path betwernys andz,. Then the profile of the cir-
Cuit {zp, 73, Vsy1, - - -, V1, Zst6, Zsi5, W1, - - - , Ws_2, Z2} With respect taz,, z3) is the same
as of C3 with respect to(Yo, Y1). Henceé(vsH, Zsis5) = S+ 1. But, asa(z4 Zsi5) =
s + 1, we havezs = vsy1 and 8(24, v1) = S. Therefore we have, € DS+2(23, Z4),

so thatzg,7 € Ds+3(23, Z4). Thus, by Lemma 6.2, the profile &4 with respect to

(23, 24) is
01 23210
0123210
Note thatzs, ¢ € D5+1(z4, Zs) andzs,; € DS+3(23, z)N DS+2(z4, Zs). Let{zs,7, 81, ...,
8s_1, 23} be the shortest path betwemn; andzs. Then the profile of the circuftzs, zs, 25, 7,

81, ..., z3} with respect to(zs, 4) is the same as df, with respect to(x;, X;). Hence
81 € Dgig(a, Zs5), so thatzs; g € DS™2(z4, Z5). Thus, by Lemma 6.2, the profile 6f with

respect tazy, zs) is
01 2 3 210
01 2 0120
By Lemma 6.2, we immediately have that the profile@f with respect to(zs, zs),
(26, z7) are

0 1
0

oOr N
N~ O
WN
N wN
P NO

0
10

Note that the profile o€, with respect tazs, z7) is the same as the one with respect to

(20, z1).
Now we shall shows = 1 (mod 2), and induce a contradiction. For the circTyf we

see thaizy € D 3(zs+3, Zs14) andz; € D 2(zs+3, Zs14). Hence we easily have that the
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profile of C4 with respect to(zs, 3, Zs14) is the same as the one with respect1g, z;).
Thuss+ 3 =0 (mod 6), i.e.s=1 (mod 2).
Now we have the assertion in Case 2. a

7. TypeV

If X is of type V, then we easily see the following.

(1) Foreveryr € X, I'si1(or) = Reya(@) U Reyo(e) andlsi2(o) = Reya(e) U Reya() U
Rsys5(c0).
(2) 51, 8542 aNdbsyy exist and(Cs, . 8y, beya) = (1.0,2).
S S
(3) Piei1=Pigo =1
(4) ks = Ksr1 = Ksi2 = Ksy4.

Note that (5) follows from Lemma 2.2 (1).
We separate this type into four cases as follows:

(VA) picts#0orpitis #0;

(VB) piis = pibis = Oandpitis #0;

s+4 . s+4 _ . Ss+3 s+3 s+5 .
(VC) Pieiz= Plais= pl,s;S =0, Proi1 % 2andpyg;, > 2

st+4 _ aSt4  _ ASH3 s+3  __ s+5 __
(VD) pl,s+3 - pl,s+5 - pl,s+5 =0 andpl,s+1 =1lor pl,s+2 =1

Firstly, we consider the type VA. By the symmetry, we may assumepﬁfé3 =1
Then we easily have thit,1 = Ksi4 = pjLo; -Ksia, and thatks,s = p3h, -ksis. As
ki = 3, we havep;t3, = pit3, = 1. Thus we see thad¥ls,1, Mg, Ms,;3 exist, and can

be written as follows, respectively.

Yi|B Y2 | V3 Yi|B|Y2| Y3 Yi|B|Y2|Ys
X911 4133 1 X111 31412 1 X101 3|3[1] 4
a|3|1]4] 0 a|4]12|5]|0 | 313141
Xo| 3141 2 X2| 2|5 ¢ 2 X2 | 14| 2 3
Xx3/1|0|2]|-1 X3! 1|10 2]|-1 Xx3| 411|130

Note thatp;3, > 2, ande = 2 or 6.

Lemma 7.1 Suppose that’ is of typeVA. Then the following hold.
(1) E? = ((-1,0),(1,3), (2. 4)}.

(2) E3 ={(-1.0).(L 4. (2. 5)}.

(3) E3=1{(0,1), (3,4, 4, 3).

(4) EZ=1{0,1),(4,3),(5,2).
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(5) EL} =1{(0, 2), (3,3), (4, 1)}.
(6) E3 ={(1,3.(3 1), 4 2}
(7) E3=1{(1.4.(3,3), 4, D).
©) E2— {(0,2), (4,2), (5,2} if pi’;iz =3,
* T 100.2.(4.2.6.6) if pi,=ps+1=2
9) Let B3, = pie+1=2 Then

£ { {(2.5.(6.5) if pites=3,

T 125,67 if prly=pt, +1=2.

Moreover for any pair of adjacent verticeu, v) and any xe Di*sis = Df;f’re(u, v),
e(x, Ditig) = 2.
Proof: Immediate fromMg, 1, Mg, 2 andMs, 3. O

Lemma 7.2 Itis impossible thatt’ is of typeVA.
Proof: We consider the following three cases.

5  _ aS+H6 s+5 __ aSt6
Casel. Pge= Psi7=121andpgl, = Pigs=2

By applying circuit chasing technique to two circuits having the following profiles:
013420
013410

and

02 4 3 310
01 3 3 420

we have 2 + 5 = 0 (mod 5) and 2+ 6 = 0 (mod 5), respectively, a contradiction.

Case 2. pt3, =2 pitls = 1andpitls = 3.
Let C = {Xg, X1, X2, ..., X2s13, X2s14 = Xo} be a circuit of length 2+ 4 in I" such that
the profile ofC with respect taxo, X;) is as follows:
01420
0 2520
Then we see that the profile with respectxg, x4) is the same as one with respect to

(X0, X1). It follows that 5+ 4 = 0 (mod 3), i.e.s =1 (mod 3).
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LetC’ = {Yo, Y1, V2, - . ., Y2517, Y2s18 = Yo} be a circuit of length 2+ 8 in I" such that
the profile ofC’ with respect tayo, y1) is as follows:

0142565
025652410
By Lemma 7.1ys;3 € DIF3(y1, Vo), Vsra € DIIE(Y1, ¥2), andysys € D3 (yi, y2) U

DZf2(y1, ¥2). Suppose thafs,s € DIIe(y1, Y2). Then{yo, y2} C PFi2(V1, Ysi5), which

contradicts thapj .3, = 1. Henceys,s € D'3(y1. ¥2), and the profile is

0 5 6 5
2 5 2

R

2 2 10
0 0 4 2 0
or

0 5 6 5 4 0
2 5 2 3 1

W R

2 2
0 4 0

By using circuit chasing technique, we see that the profile with respégg tg-) is the
same as the one with respect(i@, y1) in both cases. Thus we have 2 8 = 0 (mod 6),

i.e.,s =2 (mod 3). This is a contradiction. Now we have the assertion in Case 2.

Case 3. pi, = 3.

In this case, the proof is similar to the one of Case 2 of Lemma 5.1. Indeed, by applying
circuit chasing technique to two circuits having the following profile:

0 4 5 2 0
2 2 41

a N

1
0 0

and

0 2520
0 2 410Q0Q

we have 8 + 6 = 0 (mod 4) and 8+ 4 = 0 (mod 4), respectively, a contradiction. O

Consider the case VB. Lty # O with p(s + 6) = s+ 3.

Lemma 7.3 Itis impossible thatt is of typeVB.

Proof: By counting, we easily havks 1 =Ks;3- Py5q, Ksiz=Ksis- PIh, andks,s-

S+3 S+5 i S+3 _ nSt5 e
P srs=Kst5- Prsra- These imply thapy (i, = pygl, and py s = Pr e 3. Suppose that

pits, = Pit, = 2. Then we have a contradiction by Lemma 2.2 (1). Hepfg, =

pyty, = 1. It follows from Lemma 2.8 (1) thap?tS, = pit3, = pitSs = 1. Note

that Ry, () = I'sy3() for everya € X, and thatag, 3 = 5,6 = 0. However, this is a
contradiction from Lemma 2.3. Now we have the assertion. O
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In regard to the case VC, we note tleat, exists andts, o, = 2. Thus, from Lemma 2.1
(3) and Lemma 2.2, we see the following lemma.

Lemma 7.4 Suppose that’ is of typeVC. ThenI is bipartite.

Suppose that’ is of type VD.
Now, we change the indices of relations. LetlD..., s+ 2 be as above. qufgb =

S+1__ S+2 _ SH2 _ aS+H4 s+3 _ AS+3 _ _ d
Pig =Prsis = Preia=Preip, =1 Notethatp; oy =prgi, =1 Ksra=Kspa= Pigq-

N

ka, PYs34 = PYE° =PI’ =PIt} = 0, and thaty,s # 0.
Letd*=d —s. .
For the convenience, if; . # 0, then we write

1 Js
> —0

Figure 1

S+j

and, in particular, ifp; ¢’

= 2, 3, then we write

) ‘7 1 .a
[ EJ 5.‘]

Figure 2

respectively. Ifpit,; # 0, we write

Figure 3

We shall show the following.

Lemma 7.5 LetX be of typeVD. ThenX is one of the following types.

() Diut) (B=<t=<d" —2):

l ¢ /d*.—l"‘.“_<<_'t+l

Figure 4.
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(i) Do(—1):
1 d* 6 dr—1
& P e o & o -—Qﬂ
3
2 4 5
Figure 5.
@iy Da(t) (0<t<d*/2—5):
1 ¢ &1, dot-1
5 6+t.+.1.__d*—t—2
2 4 6 ® ¢ o » +t
Figure 6.
(iv) Das:
1 d* d -1
5 4 5 R P
Figure 7.

(V) Da(t) (A <t<d*/2—4):

1 d* 4 —1

o 8 & & 0 & &9

3 5 t+6

a— LB A 4

o & 6 @ 6 o0

Figure 8.
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(vi) Ds(t1, tp) (2<t; <t;<d*/2-2):

1 d* .".._@‘2t2+4
3 2 -1 W+l 2+l 243

T /'/ /
S " oo s e t 2t1+2 2+2

(vii) Dg(t) (A =<t=<d*/2-2):

Figure 9.

2t 41 2t4+3

2+ 2
Figure 10.

(viii) D7(t,to,ts) (t1>26>241+2 b+ 1<tz <d*—1):

£y + 1
2tl/‘_l/%‘“ S
o, enrz Ky,
Figure 11.
(ix) Dg(t) (IL<t<t*/2-2):
e

2t—1 241  2t+3
/

2t 2t 4+ 2
Figure 12.
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(x) Do(t) (2=t =(d"—3)/2:
1 L ottd

2t 2042
Figure 13.

In particular, in the case(i)—(viii) T is bipartite, and in the casdix), (x) I" is non-
bipartite.

Proof: Asbss #0, letpit3s = 1with (s +5) = s+ 3. Asteys = piti, = 1, we

see thap$hs # 0 by Lemma 2.8 (1).
s+5

F;rstly, we assume that{ ., , = 1. Then, by Lemma 2.8 (1), vvsera *55+d3 = Plos=
piti = 1 NOte thaks+3 = kS+5- AS kS+4 = kd = ks+3, we havepl,-;JrS — pl,S+5 — 1 By

Lemma 2.3 (2), we havp}th, = pdq,, = ply = 0, so tha 4 = by = 2.

Let p;tie = Lwith (s + 6) = s+ 3. Letpji® # 0. Then, aks;4 = ka, Pihie =
ple.6 = 1 and asg = 3, we haveptS, = pi = 1. ThenX is of type Dp(—1). Let
pg”dfl = 1withd — 1 # s+ 6 and withg(d — 1) = s+ 3. By Lemma 2.8 (2), we have

pite, = 2andp ' > 2. Itfollows from Lemma 2.1 (3) and Lemma 2.2 tiais bipartite.

Note that, if pit5, = plg!, thenksss = ky_1. Let pitS, = Lwithg(s+7) = s+ 4.
Suppose thap} ", = 1. Then, aks s = kg_1 andky = 3, we havep$’y’ | = pitfs = 1.
Thus in this case’ is of type D,(0). Similarly, we see that, ipiSJrl =1, thenX is of type
Da(t) (t = 6) or Do(t) (t = —1).

Now assume thap{ .., > 2. Note thatky < ksy3 = Ksy4.

Let p;iis = 2. Since Reys = pyils - Keis andksis = Ksi3 = pIi s - ksis, we have

(P75 5. PIET,) = (1,2). Note thatds,s = 0. Thus, by Lemma 2.2 (2); is bipartite, and
X is of type Dg(1).

I+_5et py5is = 1. Then we easily havpfgi3+5= pigz_él =1 andks,;3=ks a= ks*fg', As
S S A S
Prg < land Xy < ksy1=Ksy5, We havep;y’ = pig,s = 0. Hencelsis=p;q s +
s+5 2
Pisia =2
S+4 s+4 s+4

Let pigi5 = P4 = 1. Thends s = pyg 4 = 1, andl is non-bipartite. By Lemma
2.3 (2), it must hold thapi*s?F5 = 1. Inthis caseY is of type Dg(1).

Let pitls = pitie = L withp(s+6) = s+ 3. Letpd ¢ # 0. Then we easily have
Py, = 2andpyt® = p ¢ = 1. Note thatds,s = 0, and that, by Lemma 2.2 (1),
&s,5 = 0. Thus, by Lemma 2.1 (3) and Lemma 2.2 [R)is bipartite andY’ is of type Ds.

Let pfg.s = 0 andpits, > 2. Note that, ifpd, ; = 1 withpd — 1) = s+3,
then pf_gl > 2 by Lemma 2.1 (3). Hence we see tlats(x, y) > 2 for any vertices
X, Yy with 3(X, y) = s+ 3. Hence, by Lemma 2.2 (1), becomes bipartite. In particular,
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Py = Pihos = 0. Letpity, = 1with (s + 7) = s+ 4. If pitS, # 0, then we easily

have (pj5ls. piile) = (2.1), so thatX is of type Ds(2, 2). Suppose thap{}, # 0.

1,5+7
Then we have
Ksi5 < 2Ksy7 < 2Kg—1 = 4Ky = 2Ksys,

a contradiction. Lep{y', = 1withp(d — 2) = s+ 4. If p{ ;%5 # 0, then we easily have
(%6 P2y = (2.1), andX is of type Dy(1).

Let pf o ¢ = 0andptS, = 1. By Lemma 2.8 (1)p;tSs = pitls = piiie = 1, or
Py, # 0 and p'f;L # 0 with (s + 7) = s+ 4. In particular, in the first casey is of
type Dg(2).

Thus, by repeating the same argument as above, we have this lemma. O

In the following, for the simplification of indices, we replace the indiBgst) andDg(t)
with Dg(t) andDj(t), respectively.
To complete the proof of Theorem 1.1, it remains to show the following two lemmas.

Lemma 7.6 Itis impossible thatt’ is of type L(t) (t > 1).
Lemma 7.7 Itis impossible thatt’ is of type O(t) (t > 2).
In order to show these two lemmas, we need the following two lemmas.

Lemma 7.8 Suppose that’ is of type O (t) (f = 0or 1). Then the following hold.
(1) E? ={(-1,0), (1, d"), (2 3)}.
(2) E9 ={(-1.0),(13), (2 4}.
(3) E3=1{(0,2),(3,5), (d*, 1)}.
4) Forl<i<t-f
B3, =1{@ —22 —1),@ +12), 2 +22 +3).
B) For2<i<t-f,
EZ1=1{2 —32 -1, —-22), (@2 +12 +3)
6) Forl<i=<t-—f,
EZ,,=1{(2 —22),(2+12 +3),2 +22 +4).
(7) If f =0, then
Ea,={(2t—22t), (2t +1,2t+3), (2t +2 2t +2)},
EZfS=1{(2t+1), (2 +22t+3), (2t +3,2t +2)},
Eafs=1{(t—12t+1), (2,2t +2), (2t +3 2t + 3)},
EZ15 = {(2t, 2t +2), (2t + 2, 2t), (2t + 3, 2t + 3)},
EalS=1{(t+12t+3), (2 +22t+2), (2t +3,2t + 1)}
(8) If f =1, then
EZ,,={(2—22t), (2t + 1,2t +2), (2t +2 2)},
EZ, ={(—22t—1), 2 +12), (2t +22+2)
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Eai={(2&-32t—1),2t—22), (2 +12t +2)},
B2 ={(2,2t+1), (2t +120), (2t +2 2t + 2)},
Eal ={(@&—-12t+1), (2,2t +2), (2 +2 20)}.

@ st [1O D@D @ d = 1) i plo = plg, +1=2
“ 710D, G D, @ D) it pd., =3
(10) If pg,s_kl = pid_l +1= 2, then

d (@, d*), (d* —1,d*)} if p1d =
. KLWMW—LW—m}ﬁmd_mdﬁ4_2

Moreover for any pair of adjacent verticegu, v) and any xe Dg_l: Dg_l(u, v),
e(x, D§™) = 2.

Proof: Similar to the proof of Sublemma 4.2.2. m|
Forj >0,letfi /i +2j]land i +2j “\i] be the sequences
Li+2i+4,...,i4+2]j,
i+2j,i4+2(j —1,....1,

respectively.
By Lemma 7.8, we immediately have the following.

Lemma 7.9 LetX beoftype (t) (f =0or 1). Let C= {Xo, X1, ..., Xn = Xo} be a

circuit of length n. Then the following hold.

(1) Let % € DL (X0, X1) With j1 # jo and ., jo > O. If, for a positive integer 5 with
j1+2j3 j2+2j3<2t+3~f,

oc(Xo; i, ..., 1+ j3) = ([j1 /" j1 + 2j3]),
then
oc(Xy i, ..., i+ 3= =(j2+2 /7 j2+2j3D.

(2) I__et %ii € D:Ijjzl(Xo, xl).with j1# j2and j, j» < 2t+3— f. If, for a positive integer
jawith j1 — 2js, jo — 2j3 > 0,

oc(Xo; i, ..., 1+ j3) = ([J1 \d J1 — 2j3]),
then
oc(Xy3 i, ..., i+ j3—D=(j2—2\j2—2j3D.

Proof of Lemma 7.6: Itis enough to consider the following three cases.
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Casel. d=s+2t+4,ie,pl,, =3

We shall prove it by the same way as in Case 2 of the proof of Lemma 5.1. Indeed, by
applying circuit chasing technique to two circuits having the following profiles:
0 3 d*
1

10
d 1 3 2

2
0 Q
and

0 dx

1 10
0 1 3 2

Q

we have 8 + 6 = 0 (mod 4) and 8+ 4 = 0 (mod 4), respectively, a contradiction.

Case2. d-1=s+2t+4,ie,(plgq. plg s, PIgH = (2 1,3).

In this case we proof by the same way as in Case 2 of the proof of Lemma 7.2. Indeed,
by applying circuit chasing technique to two circuits having the following profiles:

0 2 3 0
01 d 1 0

and

0 3 d* d—-1 d* 1 0
1 2

2
0 d* d*-1 d* 1 3 Q
we have 2 + 4 = 0 (mod 3) and 8 + 8 = 0 (mod 6), respectively, a contradiction.

Case3. d-2>s+2t+4,ie,ply; =pigl, =1withed) =pd-1) - 1=
od—-2) — 2.

LetC = {Xg, X1, ..., Xos1 2145 = Xo} be a circuit of length 2+ 2t + 5 such that

oc(Xo) = ([2 7 2t + 2], 2t + 3, [2t + 3\, 1], 0),
ocx) = (2 /2], [2t+1 72t + 3], [2t + 3, 3], [2 \, O]).

Note that

oc(Xi;1,....0) = (2 /7 2t]),
ocxpyt+1,t+2) =2t +1 72t +3)),
Gc(Xl;t+3,...,2t+3):([2t+3\3]),
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oc(Xg; 2t +4,2t +5) = ([2 \, 0)), and thatxs;» € DST2(xy, X2). By Lemma 7.9 (1), we
have

oc(Xo; 1, ..., t—l):([2/‘2t—2])

Note thatxs 11 € ngﬁfz(xl, X2) andf)(xl, Xst+t+2) = S+ 2t + 1. By Lemma 7.8, we

Ss+2t+1 S+2t+3 S+2t+3
havexs,iy2 € Ds+2t_1(xla X2); Xst143 € D5+2t+1(X1, X2)s Xstt+4 € Ds+21+3(X19 X2), and

Xstt4+5 € DT T3(X1, X2). By Lemma 7.9 (2)pc (Xp; t +3, ..., 2t +2) = ([2t + 3 N\ 5)).
By Lemma 7.8pc(X2; 2t + 3,2t + 4,2t + 5) = (4, 2, 0) = ([4 ~\ 0]). Thus, we see that
ocX)=(2 72t =2],[2t =1 7 2t + 3], [2t + 3\ 5], [4 \y O]).
By repeating the same argument, we see that
oc(x)=(2 72t+2-2],[2t+3—-2 /2t+3],[2t+3\ 1+ 2i],[2i \ 0]
fori =3,4,...,t,

oc(Xe+1) = ([1 72t + 3], 2t + 3, [2t + 2\, 0)),

oc(Xi2) = (2 /2t + 2], 2t + 2, [2t + 3\ 1], 0),

o)) =(2 /2t +8—2j].[2t +9—2j A2t +3].[2t + 3\, 2] — 3],
[2] — 4\ 0])

forj=3,4,...,t+3,
OC(X2t+4) = ([1 /’ 2t + 3]7 2t + 21 [2t +2 \A O])s
oc(Xat45) = oc(Xo), and thabrc (Xat16) = oc(X1).
Thus we have2+ 2t + 5= 0 (mod 2 + 5), i.e., 3= 0 (mod 2 + 5).
LetC' = {VYo, Y1, ..., Yost2t2.7 = Yo} be a circuit of length 2+ 2t + 7 such that

oo (Yo) = (2 /2t +2],2t + 3,2t + 1 [2t 7 2t + 2], [2t + 2\, O]).
oo(y) = (2 /2,2t + 1,2t — 1, [2t — 2 7 2t + 2], [2t + 2\, 0)).

Then, by using the same argument as above, we see that

oc(y) = (2 72t +2-2],
2A+3-2,2t+1—2i,[2t =2 72t +2],[2t +2, 0]

fori =2,...,t,

UC’(yI+l) = (17 d*v [1 / 2t + 3]9 [2t + 3 \A 1]7 O)a
oc(Yi+2) = (1 /2t + 3], [2t + 3\ 1], d*, 1, 0),
oc(W+j) = ([2 /2t + 2], [2t + 2\ 2] — 6], 2] —5,2] —3,[2] =4\ 0])
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forj=3,...,t+3,
oc(Yara) = (2 /2t +2],2t +2,2t + 3,2t + 3,2t + 2, [2t + 2\, 0],

oc (Ya45) = oc'(Yo), and thaboe (Yai16) = oc (Y1)-

Thus we have 2+ 2t +7 = 0 (mod 2 + 5), i.e.,, 3 % 0 (mod 2 + 5). Thisis a
contradiction.

Now we conclude the proof of Lemma 7.6.

Proof of Lemma 7.7:
Casel. d-1<s+2t+ 3. Similarto Cases 1 and 2 in the proof of Lemma 7.6.

Case2. 0—22>s+2t+3,ie,ply; = piq,=1withed) =ed-1)-1=
pd—2) —2.

We prove it by the same way as in Case 3 of the proof of Lemma 7.6.
LetC = {Xo, X1, . .., Xos12t4.3 = Xo} be a circuit of length 2+ 2t + 3 such that

oc(Xo) = (2 /2t + 2], [2t + 1 1], 0),
oc(x)) =2 72t + 2], [2t + 1\ 3],[2\,OD.

Then, by using circuit chasing technique, we see Xy 3) = oc(Xg), and that
oc(Xat+4) = oc(X1).

Thus we have2+ 2t + 3= 0 (mod 2 + 3),i.e., =0 (mod 2 + 3).

LetC' = {VYo, Y1, - - -, Yos+2t47 = Yo} be a circuit of length 2+ 2t + 7 such that

oc(Yo) = (L, d*[1 72t + 1] [2t + 2\ 2], [2t + 1\ 1], 0),
oo(y)=(1 72t +1],[2t + 2\, 2t — 2], [2t — 1\, 1], d*, 1, 0).

Then, in conclusion, we see that the profil€6With respectt@y+1)2t+5)+1, Yit+1)@t+5+2)
is the same as the one with respeaty@ y1), which implies that 8 £ 0 (mod 2 + 3), and
we have a contradiction. The author is afraid that it is very hard for any reader to check it,
but the argument used for it (circuit chasing technique) is routine.
Now we conclude the proof of Lemma 7.7. O

Proof of theorem 1.1: Suppose thal is a connected cubic graph. Then, by Lemmas

4.2,4.3,4.4,45,46,5.1,6.1,7.2,7.3,7.4,7.5,7.6 and 7.7, it must hold ibaipartite.
Thus we have the assertion. O

8. On bipartite case

In the preceding sections, we avoided considering on the caseWwisdnipartite. But we
see the following:
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Proposition 8.1 If T is a non-distance-regular bipartite graptthen X" is one of the
following types.

() Dio(t) (O=<t<d*/2-1:

5 4 2% +2  d
Figure 14.
(II) Dll:
1 4 d*
PR .((.
0
2 3
Figure 15.
(III) Dqo:
1 3
Q
3 . e ..(Qc.i*
Figure 16.
(iv) Dua(t) (2=<t=<d"/2-1:
[
L3 5. . 2t+]
0
SRR ST S

Figure 17.
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(v) D) (A<t<d*/2-2):

1,< <3 L2l
0 2 4 . 2t + 2

2t +3

Figure 18.

(vi) Dis(ty, tp) (t1>124h+4 <ty <d*—2):
o+l W3

Figure 19.

(vii) Dty ) (1 > 1,21 +2 <t <d*—2):

. .._<§2

Figure 20.
(viii) (i)—(viii) in Lemma 7.5.

Proof: It suffices to consider the type IID or VC. ¥ is of type 1ID, then we easily see
that X is of type (i), (ii), (iii) or (iv). If X is of type VC, then we easily see thatis of

type (v), (vi) or (vii).
Thus we have the assertion. O

Remark The author knows one example of symmetric association scheme suchishat
a connected non-distance-regular bipartite cubic graph, which is oDyg@) with s = 2
andd = 5. Namely, this is constructed from one connected compondnj@h (x € I'')
of I whenI is the generalized hexagon @&, 2) (one of two graphs). See [4, p. 384].
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