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1. Introduction

Let X be a finite set andRi (i = 0, 1, . . . , d) be subsets ofX × X with the properties that

(i) R0 = {(x, x) | x ∈ X};
(ii) X × X = R0 ∪ · · · ∪ Rd, Ri ∩ Rj = ∅ if i 6= j ;

(iii) tRi = Ri ′ for somei ′ ∈ {0, 1, . . . , d}, wheretRi = {(x, y) | (y, x) ∈ Ri };
(iv) for i, j, k ∈ {0, 1, . . . , d}, the number ofz ∈ X such that(x, z) ∈ Ri and(z, y) ∈ Rj

is constant whenever(x, y) ∈ Rk. This constant is denoted bypk
i, j .

Such a configurationX = (X, {Ri }0≤i ≤d) is called anassociation schemeof classd on
X. Association schemes with the additional properties

(v) pk
i, j = pk

j,i for all i, j, k, and
(vi) for every i , i ′ = i , i.e., Ri is a symmetric relation

are calledcommutativeandsymmetric, respectively. Remark that ifX is symmetric, then
X is also commutative, and that a symmetric association scheme can be constructed from
any commutative but non-symmetric association scheme by thesymmetrization[1, p. 57].

The positive integerki = p0
i,i ′ is called thevalencyof Ri . It is clear that, for everyi , the

graph whose vertex set isX and edge set isRi , is aki -regular graph, and, moreover, ifi = i ′,
then it is undirected. We call it theRi -graph. Note that, ifY is a connected component of
the Ri -graph for somei , thenY = (Y, {Ri ∩ (Y × Y)}i ∈3) is also an association scheme of
class|3|−1, where3 = {i | (x, y) ∈ Ri , x, y ∈ Y}. If for any i with 1 ≤ i ≤ d, Ri -graph
is connected, we say thatX is primitive.

Let 0 be a connected undirected finite simple graph. Forα, β ∈ V(0), let ∂(α, β) be the
distance betweenα andβ. Let d(0) be the maximal distance in0, called thediameter
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of 0. Let 0i (α) = {β ∈ V(0) | ∂(α, β) = i }, and let0(α) = 01(α). For vertices
α, β with ∂(α, β) = i , let Ci (α, β) = 0i −1(α) ∩ 0(β), Ai (α, β) = 0i (α) ∩ 0(β) and
Bi (α, β) = 0i +1(α) ∩ 0(β). Let ci (α, β) = |Ci (α, β)|, ai (α, β) = |Ai (α, β)| and
bi (α, β) = |Bi (α, β)|. If ci (α, β), ai (α, β) and bi (α, β) depend only oni = ∂(α, β),
we sayci , ai andbi exist, respectively.0 is said to bedistance-regularif ci , ai andbi

exist for all i with 0 ≤ i ≤ d(0). It is clear that a distance-regular graph isb0-regular. It
is well known that, if0 is distance-regular, thenX = (V(0), {Ri }0≤i ≤d(0)) is a symmet-
ric association scheme (called P-polynomial with respect toR1), whereRi = {(x, y) ∈
V(0) × V(0) | ∂(x, y) = i } (0 ≤ i ≤ d(0)).

In the study of association schemes, the following problems seem very important.

(1) Determine the graphs which can be theRi -graphs of an association scheme.
(2) By giving a regular graph0, determine the association schemes such that0 is the

Ri -graph for somei .

In this paper, we study on the above problems, particularly (1), in the case when the case
X is symmetric and0 is a connected cubic (3-regular) graph. We remark that, ifR1-graph
is a connected 2-regular graph, i.e., a polygon, then we easily see thatX is P-polynomial
with respect toR1.

We shall show the following.

Theorem 1.1 If X = (X, {Ri }0≤i ≤d) is a symmetric association scheme such that the R1-
graph0 is a connected non-bipartite cubic graph, thenX is P-polynomial with respect to
R1.

This immediately implies the following.

Corollary 1.2 If X = (X, {Ri }0≤i ≤d) is a primitive symmetric association scheme with
k1 = 3, thenX is P-polynomial with respect to R1.

Remark that cubic distance-regular graphs have already been classified by several authors
(see [5, 3, 2]). So, by the previous corollary, we have a classification of primitive symmetric
association schemes withk1 = 3.

2. R1-graph

LetX = (X, {Ri }0≤i ≤d) be a symmetric association scheme of classd. For verticesα, β ∈
X, let ∂̂(α, β) be the index such that(α, β) ∈ R∂̂(α,β). Let Ri (α) = {β ∈ X | ∂̂(α, β) = i }.
Pick anyt with 0 ≤ t ≤ d and let0 = (X, Rt ) be theRt -graph. For a pair of vertices
(x, y) in Ri , Pi

j,l (x, y) = {z ∈ X | (x, z) ∈ Rj , (z, y) ∈ Rl }, and letC(x, y) = Ĉi (x, y) =
C∂(x,y)(x, y), A(x, y) = Âi (x, y) = A∂(x,y)(x, y), B(x, y) = B̂i (x, y) = B∂(x,y)(x, y).
Let c(x, y) = ĉi (x, y) = c∂(x,y)(x, y), a(x, y) = âi (x, y) = a∂(x,y)(x, y) andb(x, y) =
b̂i (x, y) = b∂(x,y)(x, y).
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Lemma 2.1 Let (X, {Ri }0≤i ≤d) be a symmetric association scheme of class d. Pick any
t with 1 ≤ t ≤ d, and let0 be the Rt -graph.

For 0, the following hold.
(1) For any pair of verticesα, β ∈ X, ∂(α, β) depends only on̂∂(α, β).

In particular, if 0 is connected, there exists a surjection

ϕ : {0, 1, . . . , d} → {0, 1, . . . , d(0)}

such that, for all i with 0 ≤ i ≤ d and for all x, y ∈ X with ∂̂(x, y) = i , ∂(x, y) =
ϕ(i ).

(2) For any pair of verticesα, β ∈ X, c(α, β), a(α, β) and b(α, β) depend only on̂∂(α, β).
In particular, c(α, β) = c(β, α), a(α, β) = a(β, α) and b(α, β) = b(β, α).

(3) Let α, β and γ be vertices in X withγ ∈ B(α, β). Then c(α, β) ≤ c(α, γ ) and
b(α, β) ≥ b(α, γ ).

Proof: Straightforward. 2

Remark From (1) and (2) in the previous lemma, we see that, ifd = d(0), i.e., if ϕ is
bijective, then0 is distance-regular. The converse does not necessarily hold.

We write ĉi , âi andb̂i for the parameters as in Lemma 2.1 (2).
From now on, letX = (X, {Ri }0≤i ≤d) be a symmetric association scheme of classd such

that R1-graph0 is a connected cubic graph.

Lemma 2.2
(1) Let at exists and at = 0. Then there exist no vertices x, y, z ∈ X such that∂(z, x) =

∂(z, y) = t + 1, ∂(x, y) = 1 and that c(z, x) = c(z, y) = 2.

(2) Let j1, j2 be integers such thatϕ( j1) = ϕ( j2) − 1, pj2
1, j1

= 2, and that pj1
1, j1

= 0. Then

pj2
1, j2

= 0.

Proof:

(1) Suppose not. Note that, by Lemma 2.1(2),c(x, z) = c(y, z) = 2. Ask1 = 3, there must
exist a vertexu ∈ Ct+1(x, z) ∩ Ct+1(y, z). However, this implies thaty ∈ At (u, x),
which contradicts thatat = 0.

(2) Similar to (1). 2

Lemma 2.3
(1) Let at−2, at exists and at−2 = at = 0 for some t≥ 2. Then there exist no vertices x, y

and z such that∂(x, y) = 1, ∂(z, x) = ∂(z, y) = t − 1 and ct−1(z, x) = ct−1(z, y) =
bt−1(z, x) = bt−1(z, y) = 1.

(2) Let j1, j2, j3 be integers such thatϕ( j1) = ϕ( j2) − 1 = ϕ( j3) − 2 and pj2
1, j1

= pj2
1, j2

=
pj2

1, j3
= 1. Then pj1

1, j1
6= 0 or pj3

1, j3
6= 0.
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Proof:

(1) By Lemma 2.1 (2),ct−1(x, z) = ct−1(y, z) = 1. Let {u} = Ct−1(x, z) and {v} =
Ct−1(y, z). We see thatu 6= v. Otherwise, we havey ∈ At−2(u, x), which contradicts
thatat−2 = 0. Sincek1 = 3 andbt−1(x, z) = bt−1(x, u) = 1, there exists a vertexw
in B(x, z) ∩ B(x, u). However, this implies thaty ∈ As(w, x), which contradicts that
at = 0. Now we have the assertion.

(2) Similar to (1). 2

For the convenience, we number some indices of relations. If #{i | p1
1,i 6= 0, i 6∈ {0, 1}} =

1, let p1
1,2 6= 0. If #{i | p2

1,i 6= 0, i 6∈ {1, 2}} = 1, let p2
1,3 6= 0. We repeat this, and let

s be the maximal number such that, fori ≤ s, #{ j | pi −1
1, j 6= 0, j 6∈ {i − 2, i − 1}} = 1.

Note that, for every vertexα in X and for anyi with 0 ≤ i ≤ s, 0i (α) = Ri (α), and that
ci , ai , bi exist(0 ≤ i ≤ s).

In this paper, thedistribution diagramwith respect toR1 acts an important role. For the
definition of it, see [4, Section 2.9].

It is well known that, if the distribution diagram with respect toR1 is linear, i.e.,s = d,
then0 is distance-regular with diameterd. See [4, Proposition 2.9.1 (ii)].

Lemma 2.4 If s 6= d, then s≥ 2.

Proof: Supposes = 1. Let x, y be vertices inX with ∂̂(x, y) = 1, z ∈ P1
1,2(x, y), and

u ∈ P1
1,3(x, y). Note thatp1

1,2 = p1
1,3 = 1. As P1

1,3(x, z) 6= ∅, ∂̂(z, u) = 3. However, this
implies thaty, z ∈ P1

1,3(x, u), which contradicts thatp1
1,3 = 1. Now we have the assertion.

2

Lemma 2.5 Let s 6= d. Then(ci , ai , bi ) = (1, 0, 2) for 0 ≤ i ≤ s.

Proof: If s 6= d, then we easily havêbs = bs = 2. Henceĉs = cs = 1. Therefore we
have the assertion by Lemma 2.1 (3). 2

The following lemma is clear.

Lemma 2.6 0 is bipartite if and only if ai exists and ai = 0 for any i with0 ≤ i ≤ d(0).

Let α andβ be vertices inX with ∂̂(α, β) = i . Let 0(α) = {x1, x2, x3} and0(β) =
{y1, y2, y3}. Let Mi (α, β) be the 4× 4-matrix whose rows and columns are indexed by
(0(α) ∪ {α}) and(0(β) ∪ {β}), respectively, such that

(Mi (α, β))u,v = ∂̂(u, v) − s,

whereu ∈ 0(α) ∪ {α} andv ∈ 0(β) ∪ {β}. We identify this up to the ordering of indices.
If Mi (α, β) does not depend on the choice of(α, β) ∈ Ri , we write Mi = Mi (α, β), and
sayMi exists.
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Supposes 6= d, and letps
1,s+1 = ps

1,s+2 = 1. Letα, β be vertices inX with ∂̂(α, β) =
s. Let 0(α) = {x1, x2, x3} and0(β) = {y1, y2, y3}. As cs = 1, we may assume that
∂̂(α, y3) = ∂̂(β, x3) = s − 1 and that̂∂(x3, y3) = s − 2.

ThusMs(α, β) can be written as follows:

y1 β y2 y3

x1 i1 1 i2 0
α 1 0 2 −1
x2 i4 2 i3 0
x3 0 −1 0 −2

We may assume that 0≤ i1, i2, i3 ≤ 5.
We have the following lemma.

Lemma 2.7 Let s 6= d. For Ms(α, β) as above, the following hold.
(1) ps+1

1,s+i1
, ps+1

1,s+i2
, ps+1

1,s+i4
, ps+2

1,s+i2
, ps+2

1,s+i3
, ps+2

1,s+i4
are all nonzero. In particular, i2 = i4.

(2) #{ j ∈ {1, 2} | i j = 0} = ĉs+1 − 1 and#{ j ∈ {2, 3} | i j = 0} = ĉs+2 − 1.
(3) If i 2 = 1, then i1 = 2. Similarly, if i 2 = 2, then i3 = 1.
(4) If i 1 = 2, then i2 = 1 or i3 = 1. Similarly, if i 3 = 1, then i1 = 2 or i2 = 2.

Proof:

(1) The first claim is clear. The second immediately follows from 3= k1 = ∑d
j = 0 ps+1

1, j .

(2) As y3 ∈ Ps+1
s,1 (x1, β) ∩ Ps+2

s,1 (x2, β), it is clear.
(3) Let i2 = 1. Then we see thatα ∈ Ps+1

1,s+2(x1, y2), so thatps+1
1,s+2 6= 0. HencePs+1

1,s+2(β, x1)

6= ∅, soi1 = 2. The latter assertion is proved similarly.
(4) Similar to the proof of (3). 2

By the same argument as in the previous lemma, we have the following lemma.

Lemma 2.8 Let j1, j2, j3 be distinct integers such thatϕ( j1) ≥ 1, ϕ( j1) = ϕ( j2) − 1 =
ϕ( j3) − 1, and that pj1

1, j2
= pj1

1, j3
= 1. Then the following hold.

(1) If ĉj2 = pj2
1, j1

= 1, then there exists an integer j4 (6= j1) such that both pj21, j4
and pj3

1, j4
are nonzero.

(2) If ĉj2 = pj2
1, j1

, and if there exists no integer j4 (6= j1) such that both pj21, j4
and pj3

1, j4
are

nonzero, then pj2
1, j1

≥ 2.

Proof:

(1) Let j0 be the integer such thatpj1
1, j0

= 1 and thatϕ( j0) = ϕ( j1)−1. Letα, β be vertices
in X with ∂̂(α, β) = j1, 0(α) = {x1, x2, x3}, and let0(β) = {y1, y2, y3}. Then we
may assume thatM j1(α, β) is as follows:
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y1 β y2 y3

x1 ∗ j2 − s ∗ ∗
α j2 − s j1 − s j3 − s j0 − s
x2 ∗ j3 − s ∗ ∗
x3 ∗ j0 − s ∗ ∗

As ĉj2 = pj2
1, j1

= 1, we havê∂(x1, y3) = j1 and∂̂(x1, y2) 6= j1. Hence we may assume
that∂̂(x1, y2) = j4 6= j1. It follows thaty2 ∈ P j2

1, j4
(β, x1) andx1 ∈ P j3

1, j4
(α, y2), so that

pj2
1, j4

6= 0 andpj3
1, j4

6= 0.
(2) It follows directly from (1). 2

By Lemma 2.7, we see that(i1, i2, i3) is one of the following:

(0, 0, 0), (0, 0, 2), (0, 0, 3), (0, 2, 1), (0, 3, 0), (0, 3, 2), (0, 3, 3), (0, 3, 4), (1, 0, 0),

(1, 0, 2), (1, 0, 3), (1, 2, 1), (1, 3, 0), (1, 3, 2), (1, 3, 3), (1, 3, 4), (2, 0, 1), (2, 1, 0),

(2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 2, 1), (2, 3, 1), (3, 0, 0), (3, 0, 2), (3, 0, 3), (3, 0, 4),

(3, 2, 1), (3, 3, 0), (3, 3, 2), (3, 3, 3), (3, 3, 4), (3, 4, 0), (3, 4, 2), (3, 4, 3), (3, 4, 4),

(3, 4, 5), (4, 3, 4).

Note that, for example,(3, 4, 5), (3, 5, 4), (4, 3, 5) and(4, 5, 3) can be regarded as the
same type.

Lemma 2.9 Let (i1, i2, i3) be one of the above. Then the following hold.

(1) Ms exists, except the case(i1, i2, i3) = (0, 3, 0), (3, 0, 3), (1, 2, 1), (2, 1, 2), (3, 4, 3)

or (4, 3, 4). Moreover, (i1, i2, i3) = (0, 3, 0) or (3, 0, 3) if and only if (ps+1
1,s , ps+1

1,s+3,

ps+2
1,s , ps+2

1,s+3)= (2, 1, 2, 1), (i1, i2, i3) = (1, 2, 1)or (2, 1, 2) if and only if (ps+1
1,s , ps+1

1,s+1,

ps+1
1,s+2, ps+2

1,s , ps+2
1,s+1, ps+2

1,s+2) = (1, 1, 1, 1, 1, 1), and(i1, i2, i3) = (3, 4, 3) or (4, 3, 4)

if and only if(ps+1
1,s , ps+1

1,s+3, ps+1
1,s+4, ps+2

1,s , ps+2
1,s+3, ps+2

s,s+4) = (1, 1, 1, 1, 1, 1).
(2) If i 1 6= i3, then(i1, i2, i3) and(i ′

3, i ′
2, i ′

1) can be regarded as the same type, where for
j = 1, 2, 3,

i ′
j =


i j if i j 6∈ {1, 2},
2 if i j = 1,

1 if i j = 2.

Proof:

(1) Straightforward. For example,(i1, i2, i3) = (0, 3, 4) if and only if (ps+1
1,s , ps+1

1,s+3,

ps+2
1,s , ps+2

1,s+3, ps+2
1,s+4) = (2, 1, 1, 1, 1).

(2) It is clear from the symmetry of indices of relations. 2
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By (1) in the previous lemma, the type of(i1, i2, i3) can be regarded as ofX .
Thus, ifs 6= d, the type ofX is one of the following.

(I) (i1, i2, i3) = (0, 0, 0), (1, 2, 1) or (2, 1, 2), (1, 3, 2), (2, 3, 1), (3, 3, 3),

(0, 3, 0) or (3, 0, 3),

(IIA ) (0, 2, 1), (0, 3, 3), (2, 1, 1),

(IIB) (0, 0, 2), (1, 0, 2), (1, 0, 3), (2, 0, 1),

(IIC) (0, 3, 2), (3, 3, 2),

(IID) (0, 0, 3), (3, 0, 4), (0, 3, 4), (3, 3, 4), (3, 4, 3) or (4, 3, 4),

(III ) (1, 3, 4),

(IV) (2, 1, 3),

(V) (3, 4, 5).

In the rest of this paper, we shall show that, if0 is non-bipartite, thenX is not of any
type in (I)–(V).

3. Circuit and profile

For fixed verticesu, v ∈ X with (u, v) ∈ R1, let Di
j = Di

j (u, v) = P1
i, j (u, v). For subsets

A, B in X, let e(A, B) be the number of edges in0 betweenA andB. For x ∈ X, write
e(x, A) = e({x}, A).

We easily have the following.

Lemma 3.1 Let s 6= d and let(u, v) be any pair of adjacent vertices. Then the following
hold.
(1) Di

j 6= ∅ if and only if pi
1, j 6= 0. In particular, Di −1

i 6= ∅ (1 ≤ i ≤ s + 1), Ds
s+2 6= ∅,

and Di
i = ∅ (1 ≤ i ≤ s).

(2) For 1 ≤ i ≤ s, e(Di −1
i , Di −1

i ) = e(Di −1
i , Di

i −1) = e(Di
i +1, Di

i +1) = 0.
(3) e(Ds

s+2, Ds
s+2) = 0.

(4) For every x∈ Di
i +1 (1 ≤ i ≤ s), e(x, Di −1

i ) = 1.
(5) For every x∈ Ds

s+2, e(x, Ds−1
s ) = 1.

(6) For every y∈ Di −1
i (1 ≤ i ≤ s − 1), e(y, Di

i +1) = 2.
(7) For every y∈ Ds−1

s , e(y, Ds
s+1) = e(y, Ds

s+2) = 1.

Proof: Straightforward. 2

For x ∈ Ds+i
s+ j , let

Ei
j (x) = {

(i ′, j ′)
∣∣ e

(
x, Ds+i ′

s+ j ′
) 6= 0

}
,

whereDm
n = Dm

n (u, v) for a given pair of adjacent vertices(u, v) in 0. If Ei
j (x) depend

only on i and j , we writeEi
j = Ei

j (x).
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In this paper, acircuit in 0 is defined as a connected induced 2-regular subgraph.

Lemma 3.2 Let s 6= d and let{x0, x1, . . . , xt−1, xt = x0} be a circuit of length t in0.
Then, for any i, j with 0 ≤ i ≤ t − 1 and with1 ≤ j ≤ s, xi + j ∈ D j

j −1(xi , xi +1) and
xi − j +1 ∈ D j −1

j (xi , xi +1), where indices are given by modulo t. In particular, t ≥ 2s + 2.

Proof: Immediate from Lemma 3.1. 2

Let C = {x0, x1, . . . , xt } be a circuit of lengtht in 0. Note thatxu+s ∈ Ds
s−1(xu, xu+1)

and xu+t−s+1 ∈ Ds−1
s (xu, xu+1), where indices are given by modulot . If xu+s+1 ∈ Ds+ j1

s+l1

(xu, xu+1), . . . , xu+t−s ∈ Ds+ jt−2s

s+l t−2s
(xu, xu+1), we call

0 j1 j2 . . . jt−2s (−1)

(−1) l1 l2 . . . l t−2s 0

theprofileof C with respect to(xu, xu+1). Note thatl1 = jt−2s = 0. Let

σC(xu) = ( j1, j2, . . . , jt−2s),

and, fore1, . . . , en ∈ {1, 2, . . . , t − 2s}, let

σC(xu; e1, . . . , en) = (
je1, . . . , jen

)
.

4. Type I, II

Lemma 4.1 Suppose thatX is of typeI. Then0 is distance-regular.

Proof: Suppose that(i1, i2, i3) = (0, 0, 0). Then we have that, for everyα ∈ X, 0s+1(α) =
Rs+1(α) ∪ Rs+2(α), d = s + 2 and thatcs+1 = ps+1

1,s = ps+2
1,s = 3. This implies that0 is a

bipartite distance-regular graph withd(0) = s + 1 and with the intersection array

{3, 2, . . . , 2; 1, . . . , 1, 3}.

Similarly, if (i1, i2, i3) = (1, 2, 1) or (2, 1, 2), then0 is a distance-regular graph with
d(0) = s + 1 and with the intersection array

{3, 2, . . . , 2; 1, . . . , 1}.

Suppose that(i1, i2, i3) = (0, 3, 0) or (3, 0, 3). Then we see that0s+2(α) = Rs+3(α) for
everyα ∈ X, and thatci , ai , andbi exist for 0≤ i ≤ s + 2. Note that(cs+1, as+1, bs+1) =
(2, 0, 1) and that

ks+1 = ks+2 = ks+3 · ps+3
1,s+1 = ks+3 · ps+3

1,s+2,
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that is,cs+2 = ps+3
1,s+1 + ps+3

1,s+2 = 2. If d = s+ 3, thenps+3
1,s+3 = 1, and0 is a non-bipartite

distance-regular graph withd(0) = s + 2 and with the intersection array

{3, 2, . . . , 2, 1; 1, . . . , 1, 2, 2}.

Let d > s + 3 andps+i
1,s+i +1 6= 0 (3 ≤ i ≤ d − s − 1). Then we have that0s+i (α) =

Rs+i +1(α) (3 ≤ i ≤ d − s − 1) for everyα ∈ X, and that0 is a distance-regular graph
with d(0) = d − 1. Moreover, by Lemma 2.2 (2),(pd

1,d−1, pd
1,d) = (3, 0). Henceai = 0

for 0 ≤ i ≤ d(0) and0 is bipartite. In the case(i1, i2, i3) = (3, 3, 3), the proof is similar.
Suppose that(i1, i2, i3) = (1, 3, 2). Then we see that0s+2(α) = Rs+3(α) for every

α ∈ X, and thatci , ai , bi exist for 0≤ i ≤ s + 2. Note that(cs+1, as+1, bs+1) = (1, 1, 1)

andcs+2 = ps+3
1,s+1 + ps+3

1,s+2 = 2. Note that there existx, y, z ∈ X such that∂(z, x) =
∂(z, y) = s + 1 and∂(x, y) = 1. Sincecs+1 = bs+1 = 1 andas = 0, it follows from
Lemma 2.3 (1) thatas+2 = ps+3

1,s+3 = 1, so that0 is a non-bipartite distance-regular graph
with d(0) = s + 2 = d − 1 and with the intersection array

{3, 2, . . . , 2, 1; 1, . . . , 1, 2}.

The proof for the case(i1, i2, i3) = (2, 3, 1) is similar. 2

Lemma 4.2 Suppose thatX is of typeI. Then0 is bipartite.

Proof: By the list of cubic distance-regular graphs in [3], if(i1, i2, i3) = (1, 2, 1) or
(2, 1, 2), then0 has the intersection array

{3, 2; 1, 1},

which contradicts Lemma 2.4. 2

If (i1, i2, i3) = (0, 3, 0), (3, 0, 3) or (3, 3, 3) andd = s + 3 (see the proof of Lemma
4.1), then we cannot find the appropriate graphs in the list in [3].

Suppose that(i1, i2, i3) = (1, 3, 2). Then, by the list in [3],0 has the intersection array

{3, 2, 2, 1; 1, 1, 1, 2},

so thats = 2 andd = d(0) + 1 = 5. We need two sublemmas as follows.

Sublemma 4.2.1 Suppose(i1, i2, i3) = (1, 3, 2). Then Ms+1 and Ms+2 exist as follows,
respectively.

y1 β y2 y3

x1 0 1 3 1
α 1 1 3 0
x2 3 3 1 2
x3 1 0 2 −1

y1 β y2 y3

x1 0 2 3 2
α 2 2 3 0
x2 3 3 2 1
x3 2 0 1 −1
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Proof: Let α, β ∈ X with ∂̂(α, β) = s + 1, R1(α) = {x1, x2, x3}, and let R1(β) =
{y1, y2, y3}. As cs+1 = ps+1

1,s = 1, we may assume that∂̂(α, y3) = ∂̂(β, x3) = s and
∂̂(x3, y3) = s − 1. As ps+1

1,s+1 = ps+1
1,s+3 = 1, let ∂̂(α, y1) = ∂̂(β, x1) = s + 1 and

∂̂(α, y2) = ∂̂(β, x2) = s + 3. As ps+2
1,s+1 = 0, we havê∂(x1, y3) = ∂̂(x3, y1) = s + 1 and

∂̂(x2, y3) = ∂̂(x3, y2) = s + 2. As ps+3
1,s = 0, we have∂̂(x1, y2) = ∂̂(x2, y1) = s + 3.

This immediately implies that̂∂(x1, y1) = s and∂̂(x2, y2) = s+ 1. Thus we see thatMs+1

exists as above.
Similarly, for Ms+2. 2

Sublemma 4.2.2 Suppose(i1, i2, i3) = (1, 3, 2). Then the following hold.
(1) E0

1 = {(−1, 0), (1, 1), (2, 3)}.
(2) E0

2 = {(−1, 0), (1, 3), (2, 2)}.
(3) E1

1 = {(0, 1), (1, 0), (3, 3)}.
(4) E2

3 = {(0, 1), (2, 3), (3, 2)}.
(5) E1

3 = {(0, 2), (1, 3), (3, 1)}.
(6) E2

2 = {(0, 2), (2, 0), (3, 3)}.
(7) E3

3 = {(1, 1), (2, 2), (3, 3)}.

Proof:

(1) Letx ∈ Ds
s+1. Then, forMs, we may assume thatu = α, v = x1 andx = β. Then

we see thaty3 ∈ Ds−1
s , y1 ∈ Ds+1

s+1 andy2 ∈ Ds+2
s+3. Thus we have the assertion.

(2)–(6) Similar to (1).
(7) Let x ∈ Ds+3

s+3. As ps+3
1,s+1 = ps+3

1,s+2 = ps+3
1,s+3 = 1, we may assume that

E3
3(x) = {(1, j1), (2, j2), (3, j3)} = {( j4, 1), ( j5, 2), ( j6, 3)}.

From(1) to (6), it must hold thatj1 = j4 = 1, j2 = j5 = 2 and j3 = j6 = 3, as desired.
2

Now we shall show that it is impossible that(i1, i2, i3) = (1, 3, 2). We use circuit chasing
technique. LetC = {x0, x1, . . . , x9, x10 = x0} be a circuit of length 2s+ 6 = 10 in0 such
that the profile with respect to(x0, x1) is as follows:

0 1 1 3 3 1 0
0 1 3 3 1 1 0.

Note that the existence of this circuit is guaranteed by Lemma 3.1 and Sublemma 4.2.2,
∂̂(x0, x3) = s + 1 = 3, and thatx4 ∈ Ds+1

s (x1, x2) = D3
2(x1, x2). By Sublemma 4.2.2 (1),

(4) and (3), we easily have that the profile ofC with respect to(x1, x2) is

0 1 3 3 1 1 0
0 2 2 0 1 1 0.
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Similarly, the profile ofC with respect to(x2, x3) is

0 2 2 0 1 1 0
0 2 2 3 3 2 0.

This implies that∂̂(x3, x0) = s + 2 = 4, which is a contradiction. Thus we have the
assertion.

Finally, we shall show that the case(i1, i2, i3) = (2, 3, 1) is impossible. In this case,0
has the same intersection array as the one in the case(i1, i2, i3) = (1, 3, 2). For the proof,
we need the following.

Sublemma 4.2.3 Suppose(i1, i2, i3) = (2, 3, 1). Then the following hold.

(1) E0
1 = {(−1, 0), (1, 2), (2, 3)}.

(2) E0
2 = {(−1, 0), (1, 3), (2, 1)}.

(3) E1
2 = {(0, 1), (2, 0), (3, 3)}.

(4) E1
3 = {(0, 2), (2, 3), (3, 1)}.

(5) E2
3 = {(0, 1), (1, 3), (3, 2)}.

(6) E3
3 = {(1, 2), (2, 1), (3, 3)}.

Proof: Similar to the proof of Sublemma 4.2.2. 2

We use circuit chasing technique again. LetC = {x0, x1, . . . , x9, x10 = x0} be a circuit
of length 2s + 6 = 10 in0 such that the profile with respect to(x0, x1) is as follows:

0 1 2 3 3 1 0
0 1 3 3 2 1 0.

Note that∂̂(x0, x3) = s + 1 = 3. By Sublemma 4.2.3, we see that the profile ofC with
respect to(x2, x3) is

0 2 1 0 2 1 0
0 2 1 3 3 2 0.

This implies that∂̂(x3, x0) = s + 2 = 4, which is a contradiction. Thus we have the
assertion.

Now we conclude the proof of Lemma 4.2.

Lemma 4.3 It is impossible thatX is of typeIIA .

Proof: Suppose that(i1, i2, i3) = (0, 2, 1). Then we see thatps+1
1,s = 2 and ps+1

1,s+2 =
ps+2

1,s = ps+2
1,s+1 = 1. By using the formulakl · pl

i, j = ki · pi
l , j , these imply thatks =

2 · ks+1 = ks+2 andks+1 = ks+2. These are impossible.
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Suppose that(i1, i2, i3) = (2, 1, 1). Then we see thatps+2
1,s+1 = 2 andps+1

1,s = ps+1
1,s+2 =

ps+2
1,s = 1. These are also impossible.
Suppose that(i1, i2, i3) = (0, 3, 3). Then we see thatps+1

1,s = ps+2
1,s+3 = 2 andps+1

1,s+3 =
ps+2

1,s = 1. Hence we haveks = 2ks+1 = ks+2, ks+1 = ks+3 · ps+3
1,s+1, and 2ks+2 =

ks+3 · ps+3
1,s+2. These imply thatps+3

1,s+2 = 4ps+3
1,s+1 ≥ 4, which is a contradiction. 2

Lemma 4.4 It is impossible thatX is of typeIIB .

Proof: In this case, we have verticesx, y, z ∈ X such that∂(z, x) = ∂(z, y) = s + 1,
∂(x, y) = 1 and thatc(z, x) = c(z, y) = 2. On the other hand, we haveas = 0, which
contradicts Lemma 2.2. 2

Lemma 4.5 It is impossible thatX is of typeIIC.

Proof: In the case(i1, i2, i3) = (0, 3, 2), we see thatps+1
1,s = 2 and ps+1

1,s+3 = ps+2
1,s =

ps+2
1,s+2 = ps+2

1,s+3 = 1. These imply thatks = 2 · ks+1 = ks+2, ks+1 = ks+3 · ps+3
1,s+1 and that

ks+2 = ks+3 · ps+3
1,s+2. Hence we have(ps+3

1,s+1, ps+3
1,s+2) = (1, 2) and ps+3

1,s+3 = 0. In the case
(i1, i2, i3) = (3, 3, 2), we see thatps+1

1,s+3 = 2 andps+1
1,s = ps+2

1,s = ps+2
1,s+2 = ps+2

1,s+3 = 1.
These imply that(ps+3

1,s+1, ps+3
1,s+2) = (2, 1) and thatps+3

1,s+3 = 0. Note that, in both cases,
ϕ(s+3) = s+2 andps+3

1,s+3 = 0. However, asps+2
1,s = ps+2

1,s+2 = ps+2
1,s+3 = 1, this contradicts

Lemma 2.3 (2). 2

Lemma 4.6 LetX be of typeIID . Then0 is bipartite.

Proof: Let (i1, i2, i3) = (0, 0, 3). Note thatps+1
1,s+1 = 3, ps+2

1,s = 2 and thatai = 0 for 0 ≤
i ≤ s+1. By Lemma 2.1 (3), we have that, for every verticesα, β ∈ 0 with ∂(α, β)≥ s+1,
c(α, β) ≥ 2. Therefore, by Lemma 2.2 (1), we haveai = 0 for s+ 1≤ i ≤ d(0). It follows
from Lemma 2.3 that0 is bipartite. In the case(i1, i2, i3) = (3, 0, 4), (3, 4, 3) or (4, 3, 4),
similarly.

Let (i1, i2, i3) = (0, 3, 4). Note thatks = 2ks+1 = ks+2 by counting, and thatps+3
1,s+1,

ps+3
1,s+2, ps+4

1,s+2 are all nonzero. We easily haveks+1 = ks+3 · ps+3
1,s+1 andks+2 = ks+3 · ps+3

1,s+2,
which imply that(ps+3

1,s+1, ps+3
1,s+2) = (1, 2). Hence, by Lemma 2.8 (2),ps+4

1,s+2 ≥ 2. It follows
from Lemma 2.2 that0 is bipartite. In the case(i1, i2, i3) = (3, 3, 4), similarly. 2

5. Type III

In this section we show the following lemma.

Lemma 5.1 It is impossible thatX is of typeIII .

Note thatX is of type III iff ps+1
1,s = ps+1

1,s+1 = ps+1
1,s+3 = ps+2

1,s = ps+2
1,s+3 = ps+2

1,s+4 = 1.
By the same argument as in the proof of Sublemma 4.2.1, we easily see thatMs, Ms+1,

Ms+2 exist, and can be written as follows, respectively.
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y1 β y2 y3

x1 1 1 3 0
α 1 0 2 −1
x2 3 2 4 0
x3 0 −1 0 −2

y1 β y2 y3

x1 0 1 3 1
α 1 1 3 0
x2 3 3 1 2
x3 1 0 2 −1

y1 β y2 y3

x1 3 3 2 1
α 3 2 4 0
x2 2 4 ε 2
x3 1 0 2 −1

By these, we see thatps+3
1,s+1 = ps+3

1,s+2 = ps+3
1,s+3 = 1 andps+4

1,s+2 ≥ 2. As ps+2
1,s+2 = 0, it

follows from Lemma 2.2 (2) thatps+4
1,s+4 = 0, soε = 2 or 5.

Lemma 5.2 Suppose that X is of typeIII . Then the following hold.

(1) E0
1 = {(−1, 0), (1, 1), (2, 3)}.

(2) E0
2 = {(−1, 0), (1, 3), (2, 4)}.

(3) E1
1 = {(0, 1), (1, 0), (3, 3)}.

(4) E2
3 = {(0, 1), (3, 3), (4, 2)}.

(5) E1
3 = {(0, 2), (1, 3), (3, 1)}.

(6) E3
3 = {(1, 1), (2, 3), (3, 2)}.

(7) E2
4 =

{
{(0, 2), (3, 2), (4, 2)} if ps+4

1,s+2 = 3,

{(0, 2), (3, 2), (4, 5)} if ps+4
1,s+2 = ps+4

1,s+5 + 1 = 2.

Proof: Similar to the proof of Sublemma 4.2.2. 2

Proof of Lemma 5.1: We consider two cases;ε = 2 or 5.

Case 1.ε = 5, i.e., ps+4
1,s+2 = 2 andps+4

1,s+5 = 1.

Let C = {x0, x1, x2, . . . , x2s+4, x2s+5 = x0} be a circuit of length 2s + 5 in 0 such that
the profile ofC with respect to(x0, x1) is as follows:

0 1 1 3 2 0
0 1 3 3 1 0.

Note that the existence of such a circuit is guaranteed by Lemma 5.2 (1), (3), (6) and (4).
By using circuit chasing technique, the profile ofC with respect to(x0, x1), (x1, x2), . . . ,

(x5, x6) are tabulated as follows:

0 1 1 3 2 0
0 1 3 3 1 0

0 2 3 1 1 0
0 1 3 3 2 0

0 2 3 3 1 0
0 1 1 3 2 0

0 1 3 3 1 0,
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where thei th and(i + 1)th rows indicate the profile ofC with respect to(xi −1, xi ). We
see that the profile with respect to(x5, x6) is the same as the one with respect to(x0, x1). It
follows that 2s + 5 ≡ 0 (mod 5), i.e.,s ≡ 0 (mod 5).

Let C′ = {y0, y1, y2, . . . , y2s+6, y2s+7 = y0} be a circuit of length 2s + 7 in 0 such that
the profile ofC′ with respect to(y0, y1) is as follows:

0 2 3 3 2 4 2 0
0 1 1 0 2 3 1 0.

Then we see that the profile with respect to(y5, y6) is the same as the one with respect
to (y0, y1). This implies that 2s + 7 ≡ 0 (mod 5), i.e.,s ≡ −1 (mod 5), a contradiction.
Now we have the assertion in Case 1.

Case 2.ε = 2, i.e., ps+4
1,s+2 = 3.

Let C = {x0, x1, x2, . . . , x2s+5, x2s+6 = x0} be a circuit of length 2s + 6 in 0 such that
the profile ofC with respect to(x0, x1) is as follows:

0 1 3 2 4 2 0
0 2 4 2 3 1 0.

Note thatxs+2 ∈ Ds+2
s (x1, x2). By Lemma 5.2 (2) and (7), we see thatxs+3 ∈ Ds+4

s+2(x1, x2),
andxs+4 ∈ Ds+2

s+3(x1, x2) ∪ Ds+2
s+4(x1, x2). Supposexs+4 ∈ Ds+2

s+4(x1, x2). Then{x0, x2} ⊂
Ps+2

1,s+4(x1, xs+4). However, this contradicts thatps+2
1,s+4 = 1. Hencexs+4 ∈ Ds+2

s+3(x1, x2).
Thus, by using circuit chasing technique, we find the profile with respect to(x4, x5) is the
same as one with respect to(x0, x1). Hence 2s + 6 ≡ 0 (mod 4), i.e.,s ≡ 1 (mod 2).

Let C′ = {y0, y1, y2, . . . , y2s+3, y2s+4 = y0} be a circuit of length 2s + 4 in 0 such that
the profile ofC′ with respect to(y0, y1) is as follows:

0 2 4 2 0
0 2 3 1 0.

By using circuit chasing technique, we easily see that the profile with respect to(y2, y3)

is as follows.

0 1 3 2 0
0 2 4 2 0.

Note thatys+4 ∈ Ds+3
s+2(y2, y3)andys+5 ∈ Ds+2

s+4(y2, y3). Letz1 ∈ 0(ys+5)∩ Ds+4
s+2(y2, y3)

andz2 ∈ 0(z1) ∩ Ds+2
s+3(y2, y3). Let {z2, z3, . . . , zs+3 = y2} be the shortest path between

z2 andy2. Then, for the circuit{y2, y3, . . . , ys+5, z1, z2, . . . , zs+3 = y2}, the profile with
respect to(y2, y3) is the same as the one ofC with respect to(x0, x1). Hence we have
z1 ∈ Ds+2

s+3(y3, y4). As ys+5 ∈ Ds+4
s+2(y3, y4), we haveys+6 ∈ Ds+2

s+4(y3, y4). Thus the profile
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of C′ with respect to(y3, y4) is as follows:

0 2 4 2 0
0 2 4 2 0.

Note thatys+5 ∈ Ds+4
s+2(y3, y4), ys+6 ∈ Ds+2

s+4(y3, y4) and, by Lemma 5.2 (2),ys+6 ∈
Ds+4

s+2(y4, y5). Let u1 ∈ 0(ys+6) ∩ Ds+3
s+2(y3, y4), and let{u1, u2, . . . , us+1, y4} be the

shortest path betweenu1 and y4. Note thatus+1 6= y5 as ĉs+2 = 1. Now we see that,
the profile of the circuit{y3, y4, us+1, . . . , u1, ys+6, ys+7, . . . , y3} with respect to(y3, y4) is
the same as the one ofC′ with respect to(y2, y3). Hence we haveys+7 ∈ Ds+2

s+4(y4, us+1).
Since(y4, ys+7) ∈ Rs+2, we have(y5, ys+7) ∈ Rs+3. Thus the profile ofC′ with respect to
(y4, y5) is as follows:

0 2 4 2 0
0 2 3 1 0,

and we find that this is the same as the one with respect to(y0, y1). Therefore, we have
2s+4 ≡ 0 (mod 4), i.e.,s ≡ 0 (mod 2). This is a contradiction. Now we have the assertion
in Case 2. 2

6. Type IV

In this section we show the following.

Lemma 6.1 It is impossible thatX is of typeIV .

Note thatX is of type IV iff ps+1
1,s = ps+1

1,s+1 = ps+1
1,s+2 = ps+2

1,s = ps+2
1,s+1 = ps+2

1,s+3 = 1.
We easily see thatMs, Ms+1, Ms+2 exist, and can be written as follows, respectively.

y1 β y2 y3

x1 2 1 1 0
α 1 0 2 −1
x2 1 2 3 0
x3 0 −1 0 −2

y1 β y2 y3

x1 1 1 0 2
α 1 1 2 0
x2 0 2 3 1
x3 2 0 1 −1

y1 β y2 y3

x1 0 1 2 1
α 1 2 3 0
x2 2 3 ε 2
x3 1 0 2 −1

Note thatps+3
1,s+2 ≥ 2. As ps+2

1,s+2 = 0, it follows from Lemma 2.2 (2) thatps+3
1,s+3 = 0, so

thatε = 2 or 4.

Lemma 6.2 Suppose thatX is of typeIV . Then the following hold.
(1) E0

1 = {(−1, 0), (1, 2), (2, 1)}.
(2) E0

2 = {(−1, 0), (1, 1), (2, 3)}.
(3) E1

2 = {(0, 1), (1, 0), (2, 3)}.
(4) E1

1 = {(0, 2), (1, 1), (2, 0)}.
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(5) E2
3 =

{
{(0, 2), (1, 2), (3, 2)} if ps+3

1,s+2 = 3,

{(0, 2), (1, 2), (3, 4)} if ps+3
1,s+2 = ps+3

1,s+4 + 1 = 2.

Proof: Immediate fromMs, Ms+1 andMs+2. 2

Proof of Lemma 6.1: We consider two cases;ε = 2 or 4.

Case 1.ε = 4, i.e., ps+3
1,s+2 = 2 andps+3

1,s+4 = 1.

By applying circuit chasing technique to two circuits having the following profiles:

0 1 1 0
0 2 1 0

and

0 1 1 2 0
0 2 3 2 0,

we have 2s + 3 ≡ 0 (mod 3) and 2s + 4 ≡ 0 (mod 3), respectively, a contradiction.

Case 2.ε = 2, i.e., ps+3
1,s+2 = 3.

Let C1 = {x0, x1, x2, . . . , x2s+4, x2s+5 = x0} be a circuit of length 2s + 5 in 0 such that
the profile ofC1 with respect to(x0, x1) is as follows:

0 2 3 2 1 0
0 2 3 2 1 0.

Note thatxs+3 ∈ Ds+3
s+2(x1, x2). By Lemma 6.2 (5), we see thatxs+4 ∈ Ds+2

s+1(x1, x2) ∪
Ds+2

s+3(x1, x2). Supposexs+4 ∈ Ds+2
s+1(x1, x2). Then we see that{x0, x2} ⊂ Ps+2

1,s+1(x1, xs+4),
which contradicts thatps+2

1,s+1 = 1. Hence we havexs+4 ∈ Ds+2
s+3(x1, x2). Then the profile

with respect to(x1, x2) is

0 2 3 2 1 0
0 2 3 2 1 0,

which is the same as the one with respect to(x0, x1).
Similarly, if C2 = {x′

0, x′
1, . . . , x′

2s+4, x′
2s+5 = x′

0} is a circuit of length 2s + 5 such that
the profile with respect to(x′

0, x′
1) is

0 1 2 3 2 0
0 1 2 3 2 0,
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then the one with respect to(x′
1, x′

2) is also as above.
Let C3 = {y0, y1, y2, . . . , y2s+3, y2s+4 = y0} be a circuit of length 2s + 4 in 0 such that

the profile with respect to(y0, y1) is as follows:

0 2 3 2 0
0 2 3 2 0.

Note thatys+3 ∈ Ds+2
s+3(y0, y1) ∩ Ds+3

s+2(y1, y2). Let u1 ∈ 0(ys+3) ∩ Ds+1
s+2(y0, y1) and

u2 ∈ 0(u1) ∩ Ds
s+1(y0, y1). Let {u2, u3, . . . , us+1, y0} be the shortest path betweenu2 and

y0. Then the profile of the circuit{y0, y1, . . . , ys+3, u1, u2, . . . , us+1, y0} with respect to
(y0, y1) is the same as ofC1 with respect to(x0, x1). Hence we haveu1 ∈ Ds+2

s+3(y1, y2), so
that ys+4 ∈ Ds+2

s+1(y1, y2). Thus the profile ofC3 with respect to(y1, y2) is

0 2 3 2 0
0 2 1 1 0.

By Lemma 6.2, we easily see that the profiles ofC3 with respect to(y2, y3), (y3, y4) are
the following:

0 2 1 1 0
0 1 1 2 0

0 2 3 2 0.

Note thatys+6 ∈ Ds+2
s+3(y3, y4) ∩ Ds+3

s+2(y4, y5). Let v1 ∈ 0(ys+6) ∩ Ds+3
s+2(y3, y4), and

let {v1, v2, . . . , vs+1, y4} be the shortest path betweenv1 andy4. Note that∂(y5, ys+6) =
∂(vs+1, ys+6) = s + 1. As cs+1 = 1, we havey5 6= vs+1. Now we can find that the
profile of the circuit{y3, y4, vs+1, . . . , v1, ys+6, . . . , y3} with respect to(y3, y4) is the same
as ofC3 with respect to(y0, y1). Hence we havê∂(vs+1, ys+7) = s + 1. This implies
that ∂̂(y5, ys+7) = s + 3, i.e.,ys+7 ∈ Ds+2

s+3(y4, y5). Thus the profile ofC3 with respect to
(y4, y5) is

0 2 3 2 0
0 2 3 2 0,

which is the same as the one with respect to(y0, y1). Therefore 2s + 4 ≡ 0 (mod 4), i.e.,
s ≡ 0 (mod 2).

Let C4 = {z0, z1, . . . , z2s+5, z2s+6} be a circuit of length 2s+ 6 such that the profile with
respect toz0, z1 is

0 1 1 2 3 2 0
0 2 3 2 1 1 0.

Note thatzs+3 ∈ Ds+2
s+3(z0, z1) ∩ Ds+3

s+2(z1, z2). Let {zs+3, u1, . . . , us, z0} be the shortest
path betweenzs+3 and z0. Then the profile of the circuit{z0, z1, . . . , zs+3, u1, . . . , z0}
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with respect to(z0, z1) is the same as ofC3 with respect to(y3, y4). Hence we see that
u1 ∈ Ds+2

s+3(z1, z2), so thatzs+4 ∈ Ds+2
s+1(z1, z2). Thus, by Lemma 6.2, the profile ofC4 with

respect to(z1, z2) is

0 2 3 2 1 1 0
0 2 1 0 2 1 0.

By Lemma 6.2, we immediately have that the profile ofC4 with respect to(z2, z3) is

0 2 1 0 2 1 0
0 1 2 3 2 1 0.

Note thatzs+5 ∈ Ds+2
s+1(z3, z4) andzs+6 ∈ Ds+2

s+3(z2, z3)∩ Ds+3
s+2(z3, z4). Letv1 ∈ 0(zs+6)∩

Ds+3
s+2(z2, z3), and let{v1, . . . , vs+1, z3} be the shortest path betweenv1 andz3. Let {zs+5,

w1, w2, . . . , ws−1, z2} be the shortest path betweenzs+5 andz2. Then the profile of the cir-
cuit {z2, z3, vs+1, . . . , v1, zs+6, zs+5, w1, . . . , ws−2, z2} with respect to(z2, z3) is the same
as ofC3 with respect to(y0, y1). Hence∂̂(vs+1, zs+5) = s + 1. But, as∂̂(z4, zs+5) =
s + 1, we havez4 = vs+1 and ∂̂(z4, v1) = s. Therefore we havev1 ∈ Ds+2

s (z3, z4),
so thatzs+7 ∈ Ds+2

s+3(z3, z4). Thus, by Lemma 6.2, the profile ofC4 with respect to
(z3, z4) is

0 1 2 3 2 1 0
0 1 2 3 2 1 0.

Note thatzs+6 ∈ Ds+2
s+1(z4, z5)andzs+7 ∈ Ds+2

s+3(z3, z4) ∩ Ds+3
s+2(z4, z5). Let{zs+7, δ1, . . . ,

δs−1, z3}be the shortest path betweenzs+7 andz3. Then the profile of the circuit{z3, z4, zs+7,

δ1, . . . , z3} with respect to(z3, z4) is the same as ofC2 with respect to(x′
0, x′

1). Hence
δ1 ∈ Ds+2

s+3(z4, z5), so thatzs+8 ∈ Ds+2
s (z4, z5). Thus, by Lemma 6.2, the profile ofC4 with

respect to(z4, z5) is

0 1 2 3 2 1 0
0 1 2 0 1 2 0.

By Lemma 6.2, we immediately have that the profile ofC4 with respect to(z5, z6),
(z6, z7) are

0 1 2 0 1 2 0
0 1 1 2 3 2 0

0 2 3 2 1 1 0.

Note that the profile ofC4 with respect to(z6, z7) is the same as the one with respect to
(z0, z1).

Now we shall shows ≡ 1 (mod 2), and induce a contradiction. For the circuitC4, we
see thatz0 ∈ Ds+2

s+3(zs+3, zs+4) andz1 ∈ Ds+3
s+2(zs+3, zs+4). Hence we easily have that the
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profile of C4 with respect to(zs+3, zs+4) is the same as the one with respect to(z0, z1).
Thuss + 3 ≡ 0 (mod 6), i.e.,s ≡ 1 (mod 2).

Now we have the assertion in Case 2. 2

7. Type V

If X is of type V, then we easily see the following.

(1) For everyα ∈ X, 0s+1(α) = Rs+1(α) ∪ Rs+2(α) and0s+2(α) = Rs+3(α) ∪ Rs+4(α) ∪
Rs+5(α).

(2) cs+1, as+1 andbs+1 exist and(cs+1, as+1, bs+1) = (1, 0, 2).
(3) ps+4

1,s+1 = ps+4
1,s+2 = 1.

(4) ks = ks+1 = ks+2 = ks+4.
(5) ps+4

1,s+4 = 0.

Note that (5) follows from Lemma 2.2 (1).
We separate this type into four cases as follows:

(VA) ps+4
1,s+3 6= 0 or ps+4

1,s+5 6= 0;
(VB) ps+4

1,s+3 = ps+4
1,s+5 = 0 andps+3

1,s+5 6= 0;
(VC) ps+4

1,s+3 = ps+4
1,s+5 = ps+3

1,s+5 = 0, ps+3
1,s+1 ≥ 2 andps+5

1,s+2 ≥ 2;
(VD) ps+4

1,s+3 = ps+4
1,s+5 = ps+3

1,s+5 = 0 andps+3
1,s+1 = 1 or ps+5

1,s+2 = 1.

Firstly, we consider the type VA. By the symmetry, we may assume thatps+4
1,s+3 = 1.

Then we easily have thatks+1 = ks+4 = ps+3
1,s+1 · ks+3, and thatks+4 = ps+3

1,s+4 · ks+3. As
k1 = 3, we haveps+3

1,s+1 = ps+3
1,s+4 = 1. Thus we see thatMs+1, Ms+2, Ms+3 exist, and can

be written as follows, respectively.

y1 β y2 y3

x1 4 3 3 1
α 3 1 4 0
x2 3 4 1 2
x3 1 0 2 −1

y1 β y2 y3

x1 3 4 2 1
α 4 2 5 0
x2 2 5 ε 2
x3 1 0 2 −1

y1 β y2 y3

x1 3 3 1 4
α 3 3 4 1
x2 1 4 2 3
x3 4 1 3 0

Note thatps+5
1,s+2 ≥ 2, andε = 2 or 6.

Lemma 7.1 Suppose thatX is of typeVA . Then the following hold.
(1) E0

1 = {(−1, 0), (1, 3), (2, 4)}.
(2) E0

2 = {(−1, 0), (1, 4), (2, 5)}.
(3) E1

3 = {(0, 1), (3, 4), (4, 3)}.
(4) E2

4 = {(0, 1), (4, 3), (5, 2)}.
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(5) E1
4 = {(0, 2), (3, 3), (4, 1)}.

(6) E3
4 = {(1, 3), (3, 1), (4, 2)}.

(7) E3
3 = {(1, 4), (3, 3), (4, 1)}.

(8) E2
5 =

{
{(0, 2), (4, 2), (5, 2)} if ps+5

1,s+2 = 3,

{(0, 2), (4, 2), (5, 6)} if ps+5
1,s+2 = ps+5

1,s+6 + 1 = 2.

(9) Let ps+5
1,s+2 = ps+5

1,s+6 + 1 = 2. Then

E5
6 =

{
{(2, 5), (6, 5)} if ps+6

1,s+5 = 3,

{(2, 5), (6, 7)} if ps+6
1,s+5 = ps+6

1,s+7 + 1 = 2.

Moreover, for any pair of adjacent vertices(u, v) and any x∈ Ds+5
1,s+6 = Ds+5

1,s+6(u, v),

e(x, Ds+2
1,s+5) = 2.

Proof: Immediate fromMs+1, Ms+2 andMs+3. 2

Lemma 7.2 It is impossible thatX is of typeVA .

Proof: We consider the following three cases.

Case 1. ps+5
1,s+6 = ps+6

s+7 = 1 andps+5
1,s+2 = ps+6

1,s+5 = 2.

By applying circuit chasing technique to two circuits having the following profiles:

0 1 3 4 2 0
0 1 3 4 1 0

and

0 2 4 3 3 1 0
0 1 3 3 4 2 0,

we have 2s + 5 ≡ 0 (mod 5) and 2s + 6 ≡ 0 (mod 5), respectively, a contradiction.

Case 2. ps+5
1,s+2 = 2, ps+5

1,s+6 = 1 andps+6
1,s+5 = 3.

Let C = {x0, x1, x2, . . . , x2s+3, x2s+4 = x0} be a circuit of length 2s + 4 in 0 such that
the profile ofC with respect to(x0, x1) is as follows:

0 1 4 2 0
0 2 5 2 0.

Then we see that the profile with respect to(x3, x4) is the same as one with respect to
(x0, x1). It follows that 2s + 4 ≡ 0 (mod 3), i.e.,s ≡ 1 (mod 3).
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Let C′ = {y0, y1, y2, . . . , y2s+7, y2s+8 = y0} be a circuit of length 2s + 8 in 0 such that
the profile ofC′ with respect to(y0, y1) is as follows:

0 1 4 2 5 6 5 2 0
0 2 5 6 5 2 4 1 0.

By Lemma 7.1,ys+3 ∈ Ds+5
s+2(y1, y2), ys+4 ∈ Ds+6

s+5(y1, y2), andys+5 ∈ Ds+5
s+2(y1, y2) ∪

Ds+5
s+6(y1, y2). Suppose thatys+5 ∈ Ds+5

s+6(y1, y2). Then{y0, y2} ⊂ Ps+5
1,s+6(y1, ys+5), which

contradicts thatps+5
1,s+6 = 1. Henceys+6 ∈ Ds+5

s+2(y1, y2), and the profile is

0 2 5 6 5 2 4 1 0
0 2 5 2 0 1 4 2 0

or

0 2 5 6 5 2 4 1 0
0 2 5 2 4 3 3 1 0.

By using circuit chasing technique, we see that the profile with respect to(y6, y7) is the
same as the one with respect to(y0, y1) in both cases. Thus we have 2s + 8 ≡ 0 (mod 6),
i.e.,s ≡ 2 (mod 3). This is a contradiction. Now we have the assertion in Case 2.

Case 3. ps+5
1,s+2 = 3.

In this case, the proof is similar to the one of Case 2 of Lemma 5.1. Indeed, by applying
circuit chasing technique to two circuits having the following profile:

0 1 4 2 5 2 0
0 2 5 2 4 1 0

and

0 2 5 2 0
0 2 4 1 0,

we have 2s + 6 ≡ 0 (mod 4) and 2s + 4 ≡ 0 (mod 4), respectively, a contradiction. 2

Consider the case VB. Letps+4
1,s+6 6= 0 with ϕ(s + 6) = s + 3.

Lemma 7.3 It is impossible thatX is of typeVB.

Proof: By counting, we easily haveks+1 = ks+3 · ps+3
1,s+1, ks+2 = ks+5 · ps+5

1,s+2 andks+3 ·
ps+3

1,s+5 = ks+5 · ps+5
1,s+3. These imply thatps+3

1,s+1 = ps+5
1,s+2 and ps+3

1,s+5 = ps+5
1,s+3. Suppose that

ps+3
1,s+1 = ps+5

1,s+2 = 2. Then we have a contradiction by Lemma 2.2 (1). Henceps+3
1,s+1 =

ps+5
1,s+2 = 1. It follows from Lemma 2.8 (1) thatps+6

1,s+3 = ps+6
1,s+4 = ps+6

1,s+5 = 1. Note
that Rs+6(α) = 0s+3(α) for everyα ∈ X, and thatas+3 = âs+6 = 0. However, this is a
contradiction from Lemma 2.3. Now we have the assertion. 2
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In regard to the case VC, we note thatcs+2 exists andcs+2 = 2. Thus, from Lemma 2.1
(3) and Lemma 2.2, we see the following lemma.

Lemma 7.4 Suppose thatX is of typeVC. Then0 is bipartite.

Suppose thatX is of type VD.
Now, we change the indices of relations. Let 0, 1, . . . , s + 2 be as above. Letps+1

1,s+3 =
ps+1

1,d = ps+2
1,s+3 = ps+2

1,s+4 = ps+4
1,s+2 = 1. Note thatps+3

1,s+1 = ps+3
1,s+2 = 1, ks+3 = ks+4 = pd

1,s+1 ·
kd, ps+3

1,s+4 = ps+3
1,d = ps+4

1,d = ps+3
1,s+3 = 0, and that̂bs+3 6= 0.

Let d∗ = d − s.
For the convenience, ifps+ j

1,s+i 6= 0, then we write

Figure 1.

and, in particular, ifps+ j
1,s+i = 2, 3, then we write

Figure 2.

respectively. Ifps+i
1,s+i 6= 0, we write

Figure 3.

We shall show the following.

Lemma 7.5 LetX be of typeVD. ThenX is one of the following types.

(i) D1(t) (6 ≤ t ≤ d∗ − 2):

Figure 4.
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(ii) D2(−1):

Figure 5.

(iii) D2(t) (0 ≤ t ≤ d∗/2 − 5):

Figure 6.

(iv) D3:

Figure 7.

(v) D4(t) (1 ≤ t ≤ d∗/2 − 4):

Figure 8.
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(vi) D5(t1, t2) (2 ≤ t1 ≤ t2 ≤ d∗/2 − 2):

Figure 9.

(vii) D6(t) (1 ≤ t ≤ d∗/2 − 2):

Figure 10.

(viii) D7(t1, t2, t3) (t1 ≥ 2, t2 ≥ 2t1 + 2, t2 + 1 ≤ t3 ≤ d∗ − 1):

Figure 11.

(ix) D8(t) (1 ≤ t ≤ t∗/2 − 2):

Figure 12.
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(x) D9(t) (2 ≤ t ≤ (d∗ − 3)/2):

Figure 13.

In particular, in the case(i)–(viii) 0 is bipartite, and in the case(ix), (x) 0 is non-
bipartite.

Proof: As b̂s+3 6= 0, let ps+3
1,s+5 = 1 with ϕ(s + 5) = s + 3. As ĉs+4 = ps+4

1,s+2 = 1, we
see thatps+4

1,s+5 6= 0 by Lemma 2.8 (1).
Firstly, we assume thatpd

1,s+1 = 1. Then, by Lemma 2.8 (1), we haveps+5
1,s+3 = ps+5

1,s+4 =
ps+5

1,d = 1. Note thatks+3 = ks+5. As ks+4 = kd = ks+3, we haveps+4
1,s+5 = pd

1,s+5 = 1. By

Lemma 2.3 (2), we haveps+4
1,s+4 = pd

1,s+4 = pd
1,d = 0, so that̂bs+4 = b̂d = 2.

Let ps+4
1,s+6 = 1 with ϕ(s + 6) = s + 3. Let ps+6

1,d 6= 0. Then, asks+4 = kd, ps+4
1,s+6 =

pd
1,s+6 = 1, and ask1 = 3, we haveps+6

1,s+4 = ps+6
1,d = 1. ThenX is of typeD2(−1). Let

pd
1,d−1 = 1 with d − 1 6= s + 6 and withϕ(d − 1) = s + 3. By Lemma 2.8 (2), we have

ps+6
1,s+4 ≥ 2 andpd−1

1,d ≥ 2. It follows from Lemma 2.1 (3) and Lemma 2.2 that0 is bipartite.
Note that, if ps+6

1,s+4 = pd−1
1,d , thenks+6 = kd−1. Let ps+6

1,s+7 = 1 with ϕ(s + 7) = s + 4.
Suppose thatps+7

1,d−1 = 1. Then, asks+6 = kd−1 andk1 = 3, we haveps+7
1,d−1 = ps+7

1,s+6 = 1.
Thus in this caseX is of typeD2(0). Similarly, we see that, ifpd

1,s+1 = 1, thenX is of type
D1(t) (t ≥ 6) or D2(t) (t ≥ −1).

Now assume thatpd
1,s+1 ≥ 2. Note that,kd < ks+3 = ks+4.

Let ps+4
1,s+5 = 2. Since 2ks+4 = ps+5

1,s+4 · ks+5 andks+4 = ks+3 = ps+5
1,s+3 · ks+5, we have

(ps+5
1,s+3, ps+5

1,s+4) = (1, 2). Note thatâs+5 = 0. Thus, by Lemma 2.2 (2),0 is bipartite, and
X is of typeD6(1).

Let ps+4
1,s+5 = 1. Then we easily haveps+5

1,s+3 = ps+5
1,s+4 = 1 andks+3 = ks+4 = ks+5. As

ps+5
1,d ≤ 1 and 2kd ≤ ks+1 = ks+5, we haveps+5

1,d = pd
1,s+5 = 0. Henceĉs+5 =ps+5

1,s+3 +
ps+5

1,s+4 = 2.
Let ps+4

1,s+5 = ps+4
1,s+4 = 1. Thenâs+4 = ps+4

1,s+4 = 1, and0 is non-bipartite. By Lemma
2.3 (2), it must hold thatps+5

1,s+5 = 1. In this caseX is of typeD8(1).
Let ps+4

1,s+5 = ps+4
1,s+6 = 1 with ϕ(s + 6) = s + 3. Let pd

1,s+6 6= 0. Then we easily have
ps+6

1,s+4 = 2 and ps+6
1,d = pd

1,s+6 = 1. Note thatâs+6 = 0, and that, by Lemma 2.2 (1),
âs+5 = 0. Thus, by Lemma 2.1 (3) and Lemma 2.2 (2),0 is bipartite andX is of typeD3.

Let pd
1,s+6 = 0 and ps+6

1,s+4 ≥ 2. Note that, if pd
1,d−1 = 1 with ϕ(d − 1) = s + 3,

then pd−1
1,d ≥ 2 by Lemma 2.1 (3). Hence we see thatcs+3(x, y) ≥ 2 for any vertices

x, y with ∂(x, y) = s + 3. Hence, by Lemma 2.2 (1),0 becomes bipartite. In particular,
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ps+5
1,s+5 = ps+6

1,s+6 = 0. Let ps+5
1,s+7 = 1 with ϕ(s + 7) = s + 4. If ps+6

1,s+7 6= 0, then we easily
have(ps+7

1,s+5, ps+7
1,s+6) = (2, 1), so thatX is of type D5(2, 2). Suppose thatpd−1

1,s+7 6= 0.
Then we have

ks+5 ≤ 2ks+7 ≤ 2kd−1 = 4kd = 2ks+5,

a contradiction. Letpd−1
1,d−2 = 1 with ϕ(d − 2) = s + 4. If pd−2

1,s+6 6= 0, then we easily have
(pd−2

1,s+6, pd−2
1,d−1) = (2, 1), andX is of typeD4(1).

Let pd
1,s+6 = 0 andps+6

1,s+4 = 1. By Lemma 2.8 (1),ps+6
1,s+6 = ps+6

1,s+5 = ps+5
1,s+6 = 1, or

ps+5
1,s+7 6= 0 andps+6

1,s+7 6= 0 with ϕ(s + 7) = s + 4. In particular, in the first case,X is of
type D9(2).

Thus, by repeating the same argument as above, we have this lemma. 2

In the following, for the simplification of indices, we replace the indicesD8(t) andD9(t)
with D′

0(t) andD′
1(t), respectively.

To complete the proof of Theorem 1.1, it remains to show the following two lemmas.

Lemma 7.6 It is impossible thatX is of type D′
0(t) (t ≥ 1).

Lemma 7.7 It is impossible thatX is of type D′
1(t) (t ≥ 2).

In order to show these two lemmas, we need the following two lemmas.

Lemma 7.8 Suppose thatX is of type D′
f (t) ( f = 0 or 1). Then the following hold.

(1) E0
1 = {(−1, 0), (1, d∗), (2, 3)}.

(2) E0
2 = {(−1, 0), (1, 3), (2, 4)}.

(3) E1
3 = {(0, 2), (3, 5), (d∗, 1)}.

(4) For 1 ≤ i ≤ t − f,

E2i
2i +1 = {(2i − 2, 2i − 1), (2i + 1, 2i ), (2i + 2, 2i + 3)}.

(5) For 2 ≤ i ≤ t − f,

E2i −1
2i +1 = {(2i − 3, 2i − 1), (2i − 2, 2i ), (2i + 1, 2i + 3)}.

(6) For 1 ≤ i ≤ t − f,

E2i
2i +2 = {(2i − 2, 2i ), (2i + 1, 2i + 3), (2i + 2, 2i + 4)}.

(7) If f = 0, then
E2t

2t+2 = {(2t − 2, 2t), (2t + 1, 2t + 3), (2t + 2, 2t + 2)},
E2t+2

2t+3 = {(2t, 2t + 1), (2t + 2, 2t + 3), (2t + 3, 2t + 2)},
E2t+1

2t+3 = {(2t − 1, 2t + 1), (2t, 2t + 2), (2t + 3, 2t + 3)},
E2t+2

2t+2 = {(2t, 2t + 2), (2t + 2, 2t), (2t + 3, 2t + 3)},
E2t+3

2t+3 = {(2t + 1, 2t + 3), (2t + 2, 2t + 2), (2t + 3, 2t + 1)}.
(8) If f = 1, then

E2t
2t+2 = {(2t − 2, 2t), (2t + 1, 2t + 2), (2t + 2, 2t)},

E2t
2t+1 = {(2t − 2, 2t − 1), (2t + 1, 2t), (2t + 2, 2t + 2)},
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E2t−1
2t+1 = {(2t − 3, 2t − 1), (2t − 2, 2t), (2t + 1, 2t + 2)},

E2t+2
2t+2 = {(2t, 2t + 1), (2t + 1, 2t), (2t + 2, 2t + 2)},

E2t+1
2t+2 = {(2t − 1, 2t + 1), (2t, 2t + 2), (2t + 2, 2t)}.

(9) Es+1
d∗ =

{
{(0, 1), (3, 1), (d∗, d∗ − 1)} if pd

1,s+1 = pd
1,d−1 + 1 = 2,

{(0, 1), (3, 1), (d∗, 1)} if pd
1,s+1 = 3.

(10) If pd
1,s+1 = pd

1,d−1 + 1 = 2, then

Ed∗
d∗−1 =

{
{(1, d∗), (d∗ − 1, d∗)} if pd−1

1,d = 3,

{(1, d∗), (d∗ − 1, d∗ − 2)} if pd−1
1,d = pd−1

1,d−2 + 1 = 2.

Moreover, for any pair of adjacent vertices(u, v) and any x∈ Dd
d−1 = Dd

d−1(u, v),

e(x, Ds+1
d ) = 2.

Proof: Similar to the proof of Sublemma 4.2.2. 2

For j ≥ 0, let [i ↗ i + 2 j ] and [i + 2 j ↘ i ] be the sequences

i, i + 2, i + 4, . . . , i + 2 j,

i + 2 j, i + 2( j − 1), . . . , i,

respectively.
By Lemma 7.8, we immediately have the following.

Lemma 7.9 LetX be of type D′f (t) ( f = 0 or 1). Let C = {x0, x1, . . . , xn = x0} be a
circuit of length n. Then the following hold.
(1) Let xs+i ∈ Ds+ j1

s+ j2
(x0, x1) with j1 6= j2 and j1, j2 ≥ 0. If, for a positive integer j3 with

j1 + 2 j3, j2 + 2 j3 ≤ 2t + 3 − f,

σC(x0; i, . . . , i + j3) = ([ j1 ↗ j1 + 2 j3]),

then

σC(x1; i, . . . , i + j3 − 1) = ([ j2 + 2 ↗ j2 + 2 j3]).

(2) Let xs+i ∈ Ds+ j1
s+ j2

(x0, x1) with j1 6= j2 and j1, j2 ≤ 2t +3− f . If, for a positive integer
j3 with j1 − 2 j3, j2 − 2 j3 ≥ 0,

σC(x0; i, . . . , i + j3) = ([ j1 ↘ j1 − 2 j3]),

then

σC(x1; i, . . . , i + j3 − 1) = ([ j2 − 2 ↘ j2 − 2 j3]).

Proof of Lemma 7.6: It is enough to consider the following three cases.
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Case 1. d= s + 2t + 4, i.e., pd
1,s+1 = 3.

We shall prove it by the same way as in Case 2 of the proof of Lemma 5.1. Indeed, by
applying circuit chasing technique to two circuits having the following profiles:

0 2 3 1 d∗ 1 0
0 1 d∗ 1 3 2 0,

and

0 1 d∗ 1 0
0 1 3 2 0,

we have 2s + 6 ≡ 0 (mod 4) and 2s + 4 ≡ 0 (mod 4), respectively, a contradiction.

Case 2. d− 1 = s + 2t + 4, i.e.,(pd
1,s+1, pd

1,d−1, pd−1
1,d ) = (2, 1, 3).

In this case we proof by the same way as in Case 2 of the proof of Lemma 7.2. Indeed,
by applying circuit chasing technique to two circuits having the following profiles:

0 2 3 1 0
0 1 d∗ 1 0.

and

0 2 3 1 d∗ d∗ − 1 d∗ 1 0
0 1 d∗ d∗ − 1 d∗ 1 3 2 0,

we have 2s + 4 ≡ 0 (mod 3) and 2s + 8 ≡ 0 (mod 6), respectively, a contradiction.

Case 3. d− 2 ≥ s + 2t + 4, i.e., pd
1,d−1 = pd−1

1,d−2 = 1 with ϕ(d) = ϕ(d − 1) − 1 =
ϕ(d − 2) − 2.

Let C = {x0, x1, . . . , x2s+2t+5 = x0} be a circuit of length 2s + 2t + 5 such that

σC(x0) = ([2 ↗ 2t + 2], 2t + 3, [2t + 3 ↘ 1], 0),

σC(x1) = ([2 ↗ 2t ], [2t + 1 ↗ 2t + 3], [2t + 3 ↘ 3], [2 ↘ 0]).

Note that

σC(x1; 1, . . . , t) = ([2 ↗ 2t ]),

σC(x1; t + 1, t + 2) = ([2t + 1 ↗ 2t + 3]),

σC(x1; t + 3, . . . , 2t + 3) = ([2t + 3 ↘ 3]),



P1: SMA/SUD

Journal of Algebraic Combinatorics KL583-05-Yam May 16, 1998 16:20

ON SYMMETRIC ASSOCIATION SCHEMES WITHk1 = 3 101

σC(x1; 2t + 4, 2t + 5) = ([2 ↘ 0]), and thatxs+2 ∈ Ds+2
s (x1, x2). By Lemma 7.9 (1), we

have

σC(x2; 1, . . . , t − 1) = ([2 ↗ 2t − 2]).

Note thatxs+t+1 ∈ Ds+2t
s+2t−2(x1, x2) and ∂̂(x1, xs+t+2) = s + 2t + 1. By Lemma 7.8, we

havexs+t+2 ∈ Ds+2t+1
s+2t−1(x1, x2), xs+t+3 ∈ Ds+2t+3

s+2t+1(x1, x2), xs+t+4 ∈ Ds+2t+3
s+2t+3(x1, x2), and

xs+t+5 ∈ Ds+2t+1
s+2t+3(x1, x2). By Lemma 7.9 (2),σC(x2; t + 3, . . . , 2t + 2) = ([2t + 3 ↘ 5]).

By Lemma 7.8,σC(x2; 2t + 3, 2t + 4, 2t + 5) = (4, 2, 0) = ([4 ↘ 0]). Thus, we see that

σC(x2) = ([2 ↗ 2t − 2], [2t − 1 ↗ 2t + 3], [2t + 3 ↘ 5], [4 ↘ 0]).

By repeating the same argument, we see that

σC(xi ) = ([2 ↗ 2t + 2− 2i ], [2t + 3− 2i ↗ 2t + 3], [2t + 3 ↘ 1+ 2i ], [2i ↘ 0])

for i = 3, 4, . . . , t,

σC(xt+1) = ([1 ↗ 2t + 3], 2t + 3, [2t + 2 ↘ 0]),

σC(xt+2) = ([2 ↗ 2t + 2], 2t + 2, [2t + 3 ↘ 1], 0),

σC(xt+ j ) = ([2 ↗ 2t + 8 − 2 j ], [2t + 9 − 2 j ↗ 2t + 3], [2t + 3 ↘ 2 j − 3],
[2 j − 4 ↘ 0])

for j = 3, 4, . . . , t + 3,

σC(x2t+4) = ([1 ↗ 2t + 3], 2t + 2, [2t + 2 ↘ 0]),

σC(x2t+5) = σC(x0), and thatσC(x2t+6) = σC(x1).
Thus we have 2s + 2t + 5 ≡ 0 (mod 2t + 5), i.e., 2s ≡ 0 (mod 2t + 5).
Let C′ = {y0, y1, . . . , y2s+2t+7 = y0} be a circuit of length 2s + 2t + 7 such that

σC′(y0) = ([2 ↗ 2t + 2], 2t + 3, 2t + 1, [2t ↗ 2t + 2], [2t + 2 ↘ 0]),

σC′(y1) = ([2 ↗ 2t ], 2t + 1, 2t − 1, [2t − 2 ↗ 2t + 2], [2t + 2 ↘ 0]).

Then, by using the same argument as above, we see that

σC′(yi ) = ([2 ↗ 2t + 2 − 2i ],

2t + 3 − 2i, 2t + 1 − 2i, [2t − 2i ↗ 2t + 2], [2t + 2 ↘ 0])

for i = 2, . . . , t,

σC′(yt+1) = (1, d∗, [1 ↗ 2t + 3], [2t + 3 ↘ 1], 0),

σC′(yt+2) = ([1 ↗ 2t + 3], [2t + 3 ↘ 1], d∗, 1, 0),

σC′(yt+ j ) = ([2 ↗ 2t + 2], [2t + 2 ↘ 2 j − 6], 2 j − 5, 2 j − 3, [2 j − 4 ↘ 0])
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for j = 3, . . . , t + 3,

σC′(y2t+4) = ([2 ↗ 2t + 2], 2t + 2, 2t + 3, 2t + 3, 2t + 2, [2t + 2 ↘ 0]),

σC′(y2t+5) = σC′(y0), and thatσC′(y2t+6) = σC′(y1).
Thus we have 2s + 2t + 7 ≡ 0 (mod 2t + 5), i.e., 2s 6≡ 0 (mod 2t + 5). This is a

contradiction.
Now we conclude the proof of Lemma 7.6.

Proof of Lemma 7.7:

Case 1. d− 1 ≤ s + 2t + 3. Similar to Cases 1 and 2 in the proof of Lemma 7.6.

Case 2. d− 2 ≥ s + 2t + 3, i.e., pd
1,d−1 = pd−1

1,d−2 = 1 with ϕ(d) = ϕ(d − 1) − 1 =
ϕ(d − 2) − 2.

We prove it by the same way as in Case 3 of the proof of Lemma 7.6.
Let C = {x0, x1, . . . , x2s+2t+3 = x0} be a circuit of length 2s + 2t + 3 such that

σC(x0) = ([2 ↗ 2t + 2], [2t + 1 ↘ 1], 0),

σC(x1) = ([2 ↗ 2t + 2], [2t + 1 ↘ 3], [2 ↘ 0]).

Then, by using circuit chasing technique, we see thatσC(x2t+3) = σC(x0), and that
σC(x2t+4) = σC(x1).

Thus we have 2s + 2t + 3 ≡ 0 (mod 2t + 3), i.e., 2s ≡ 0 (mod 2t + 3).
Let C′ = {y0, y1, . . . , y2s+2t+7 = y0} be a circuit of length 2s + 2t + 7 such that

σC′(y0) = (1, d∗, [1 ↗ 2t + 1], [2t + 2 ↘ 2t ], [2t + 1 ↘ 1], 0),

σC′(y1) = ([1 ↗ 2t + 1], [2t + 2 ↘ 2t − 2], [2t − 1 ↘ 1], d∗, 1, 0).

Then, in conclusion, we see that the profile ofC′ with respect to(y(t+1)(2t+5)+1, y(t+1)(2t+5)+2)

is the same as the one with respect to(y0, y1), which implies that 2s 6≡ 0 (mod 2t + 3), and
we have a contradiction. The author is afraid that it is very hard for any reader to check it,
but the argument used for it (circuit chasing technique) is routine.

Now we conclude the proof of Lemma 7.7. 2

Proof of theorem 1.1: Suppose that0 is a connected cubic graph. Then, by Lemmas
4.2, 4.3, 4.4, 4.5, 4.6, 5.1, 6.1, 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7, it must hold that0 is bipartite.
Thus we have the assertion. 2

8. On bipartite case

In the preceding sections, we avoided considering on the case when0 is bipartite. But we
see the following:
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Proposition 8.1 If 0 is a non-distance-regular bipartite graph, thenX is one of the
following types.

(i) D10(t) (0 ≤ t ≤ d∗/2 − 1):

Figure 14.

(ii) D11:

Figure 15.

(iii) D12:

Figure 16.

(iv) D13(t) (2 ≤ t ≤ d∗/2 − 1):

Figure 17.
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(v) D14(t) (1 ≤ t ≤ d∗/2 − 2):

Figure 18.

(vi) D15(t1, t2) (t1 ≥ 1, 2t1 + 4 ≤ t2 ≤ d∗ − 2):

Figure 19.

(vii) D16(t1, t2) (t1 ≥ 1, 2t1 + 2 ≤ t2 ≤ d∗ − 2):

Figure 20.

(viii) (i)–(viii) in Lemma 7.5.

Proof: It suffices to consider the type IID or VC. IfX is of type IID, then we easily see
thatX is of type (i), (ii), (iii) or (iv). If X is of type VC, then we easily see thatX is of
type (v), (vi) or (vii).

Thus we have the assertion. 2

Remark The author knows one example of symmetric association scheme such that0 is
a connected non-distance-regular bipartite cubic graph, which is of typeD10(0) with s = 2
andd = 5. Namely, this is constructed from one connected component of0′

3(x) (x ∈ 0′)
of 0′ when0′ is the generalized hexagon of(2, 2) (one of two graphs). See [4, p. 384].
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