ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

A Note on Thin P-Polynomial and Dual-Thin Q-Polynomial Symmetric Association Schemes

Garth A. Dickie and Paul M. Terwilliger

DOI: 10.1023/A:1008690026999

Abstract

Let Y denote a d-class symmetric association scheme, with d ge 3. We show the following: If Y admits a P-polynomial structure with intersection numbers p ij h and Y is 1-thin with respect to at least one vertex, then p ll l =0 rarr p li i =0 1 le i le - 1. If Y admits a Q-polynomial structure with Krein parameters q ij h , and Y is dual 1-thin with respect to at least one vertex, then q ll l = 0 rarr q li i = 01 le i le d-1.

Pages: 5–15

Keywords: association scheme; distance-regular graph; intersection number; Q-polynomial

Full Text: PDF

References

1. A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
2. P. Cameron, J. Goethals, and J. Seidel, “The Krein condition, spherical designs, Norton algebras, and permutation groups,” Indag. Math. 40 (1978), 196-206.
3. G. Dickie. “A note on Q-polynomial association schemes,” J. Alg. Combin. Submitted.
4. P. Terwilliger. “The subconstituent algebra of an association scheme. I,” J. Alg. Combin. 1(4) (1992), 363-388.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition