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Abstract. LetY denote ad-class symmetric association scheme, wdth- 3. We show the following: IfY
admits a P-polynomial structure with intersection numtnﬁrandY is 1-thinwith respectto atleast one vertex, then

Ph=0=py=0 l<i<d-1

If Y admits a Q-polynomial structure with Krein paramemﬁs andY is dual 1-thinwith respect to at least one
vertex, then

i1=0=0; =0 1<i=<d-1
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1. Introduction

LetY denote al-class symmetric association scheme, wlith 3. It is well-known that if
Y admits a P-polynomial structure with intersection numtpé}rsthen

PL#0 = p; #0 1<i<d-1 @)

[1, Theorem 5.5.1]. The first author shows in [3] thaY ibdmits a Q-polynomial structure
with Krein parameterqi’}, then

G #0 = gy #0 1<i=<d-1 2

In the present paper we show the following:Ylfadmits a P-polynomial structure with
intersection numberp{} , andyY is 1-thinwith respect to at least one vertex, then

ph=0= p;=0 1<i<d-1 (3)

If Y admits a Q-polynomial structure with Krein parametq'ij?s andY is dual 1-thin
with respect to at least one vertex, then

gh=0=q,=0 1<i<d-1 (4)
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The1-thinanddual 1-thinconditions are defined in Section 1.4. Our main results are in
Theorems 2.1 and 2.2.

In the following sections we introduce notation and recall basic results, following [1,
Section 2.1] and [4, Section 3].

1.1. Symmetric association schemes

By ad-classsymmetric association schemwe mean a pai¥ = (X, {R }o<i<d), WhereX
is a non-empty finite set, and where

() {Ri}o<i<d is a partition ofX x X;
(i) Ro={xx|xe X}
(i) R =R for0<i <d,whereR' ={yx|xye R};
(iv) there exist integersp{} such that for all integerh with 0 < h < d and all vertices
X,y € X with Xy € Ry,

ph=l{ze X|xze R, yze Rj}| 0<i, j<d. (5)

We refer toX as thevertex sebf Y, and refer to the integeﬁ} as thantersection numbers
of Y. Abbreviatek; = pi?, and observé; is non-zero for O<i < d.

1.2. The Bose-Mesner algebra

LetY = (X, {R}o<i<d) denote a symmetric association scheme. LetdVR} denote the
algebra of matrices ové& with rows and columns indexed b¥. Theassociate matrices
for Y are the matriced\, ..., Aq € Matx (R) defined by

1 ifxyeR,
i = X.

(Adxy 0 otherwise 7€ ©

From (i)—(iv) above we obtain
AO+"'+Ad=J’ (7)
Ao Aj =& A 0<i, j=d, ®)
Ao = I, 9)
A=A 0<i<d, (10)

d

A A =Zpih,-Ah 0<i, j=d, (11)

h=0

whered is the all-1s matrix and denotes the entry-wise matrix product.

By the Bose-Mesnealgebra ofY we mean the subalgebM of Maty (R) generated by
the associate matricég), ..., Aq. Observe by (8) and (11) that the associate matrices form
a basis forM. In particular,M is symmetric and closed under
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The algebraVl has a second bask, . .., E4 such that

Eo+ -+ Eq = I, (12)
EEj =6&E 0<i, <d, (13)
1
Eo = —J, 14
0= (14)
E = E 0<i<d, (15)

[1, Theorem 2.6.1]. We refer tBy, ..., E4 as theprimitive idempotentsf Y. SinceM is
closed undes, there exist real numbecﬁ satisfying

1

EiOEjzm

d
> aiEn O0<i.j=<d (16)
h=0

The numbersqi'} are theKrein parametergor Y. Abbreviatek* = g? for0 <i <d.
By (8), (9), and the fact thay, . .., Aq is a basis foM, the primitive idempotents have
constant diagonal; in fact

k*
(E)xx = |>'(| O0<i=<d xeX (7)

andk* # 0 [1, p. 45]. We apply (17) in the proof of Lemma 4.1.

1.3. The dual Bose-Mesner algebra

LetY denote al-class symmetric association scheme with vertexXsetssociate matrices
Ao, ..., Ag, primitive idempotentEy, . . ., Eq, and Bose-Mesner algebk. Fix a vertex
X e X.

For eachintegerwith0 < i < dlet A* = A*(x) denote the diagonal matrix in MatR)
defined by

(Ai*)yy =[X[(E)xy YeX (18)

We refer to Ay, ..., A} as thedual associate matricefor Y with respect tox. Let
M* = M*(x) denote the subalgebra of M@R) generated by the dual associate matrices.
We refer toM* as thedual Bose-Mesner algebriar Y with respect tax. From (16) we
obtain

d
AA=>"glA 0<i. j=d (19)
h=0

In particular, the dual associate matrices form a basisfor
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For eachintegarwith0 < i < dlet E = E(x) denote the diagonal matrix in MatiR)
defined by

(Ef)yy=(Adxy yeX (20)
From (7), (8) we obtain

Ei4---+E =1, 21)
EfE; = & Ef 0<i, j=<d. (22)

We refer toEg, ..., Ej as thedual idempotent$or Y with respect tax. Note that the
dual idempotents form a second basis Kbt

1.4. The thin and dual-thin conditions

LetY denote al-class symmetric association scheme with verteXsefix a vertexx € X,
and writeM* = M*(x).

LetT = T(x) denote the subalgebra of Ma@R) generated by andM*. We refer toT
as thesubconstituent algebrir Y with respect tok. By aT-modulewe mean a subspace
of the standard modulé = R* which is closed under multiplication 5. A T-module
is said to barreducibleif it properly contains nd -modules other than 0. Recall thatis
semi-simple, so tha¥ may be decomposed as a direct sum of irreducibi@modules [4,
Lemma 3.4].

An irreducibleT-moduleW is said to behin if

dmE'W =<1 0<i <d, (23)
anddual thinif

dmEW <1 0<i<d. (24)

We sayY is i-thin with respect tax if every irreducibleT-moduleW with EfW # 0

is thin. We sayY is dual i-thin with respect tax if every irreducibleT-moduleW with
EiW # 0 is dual thin.

1.5. P-and Q-polynomial structures

Let Y denote ad-class symmetric association scheme, with vertex>§etntersection
numberspir} , and Krein parameteqﬁ. We say that an orderingy, . . ., Aq of the associate
matrices is &-polynomial structurdor Y whenever

pihj = 0 ifoneofh,i, j is greater than the sum of the other two, (25)
p{} # 0 ifoneofh,i, j is equal to the sum of the other two (26)
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for0 < h,i, ] < d. Recall that ifAy, ..., Aq is a P-polynomial structure for, then A;
generated [4, Lemma 3.8].

We say that an orderingy, ..., Eq of the primitive idempotents is @-polynomial
structurefor Y whenever

q{} = 0 ifone ofh,i, j is greater than the sum of the other two, 27)
qi*} # 0 ifoneofh,i, j is equal to the sum of the other two (28)
for0 < h,i, ] < d. Recall that ifEy, ..., Eq is a Q-polynomial structure for, then for

eachx € X the dual associate matri; (x) generate*(x) [4, Lemma 3.11].

2. Results
Our main results are the following:
Theorem 2.1 LetY denote ad-class symmetric association scheiitied > 3. Suppose
Ao, ..., Ag is a P-polynomial structure for Y with intersection numbeﬁ-s and suppose
Y is 1-thin with respect to at least one vertex. Then
ph=0= p, =0 1<i<d-1 (29)

We prove Theorem 2.1 in Section 3.
Theorem 2.2 LetY denote ad-class symmetric association scheiitied > 3. Suppose
Eo, ..., Eq is a Q-polynomial structure for Y with Krein parametefjé\qind suppose Y is
dual 1-thin with respect to at least one vertex. Then

G1=0= gy =0 l<i<d-1l (30)

We prove Theorem 2.2 in Section 4.

3. Proof of Theorem 2.1
Define a symmetric bilinear form on MatR) (whereX is any set) by
(B,C) =tr(B'C) B, C e Matx(R). (31)

Observe thatB, C) is just the sum of the entries & o C. In particular, the form is
positive definite.

Lemma 3.1 (Terwilliger [4]) Let Y=(X, {Ri}o<i<q) denote a symmetric association
scheme with associate matriceg, A ., Ay and intersection numbersihjp Fix a vertex
x € X, and write E" = E"(x) for0 <i <d. Then
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(i) forO<h,h,i,i’,j,j <d,

(E AhE*, E Ah/E*) = Shi Sij’ 5“ khp”, (32)
(i) forO<h,i,j =<d,

E;AE =0« p} =0 (33)
Proof of (i): Observe

(B An ET)yZ = (Ei*)yy(Ah)yz(E}k)zz (34)
= (Ai)xy(Ah)yz(Aj)xz, (35)

so that(E;" A, E*)yZ # Oifand onlyifxy € R, yze Ry, andxz € R;. Since the relations
Ro, ..., Ry are disjoint, the matnceE*Ah E* and E*Ah/E* have no non-zero entries in
common unleshr = h',i =i’,j] = j’. In th|s case there are preusédyp,] non-zero
entries, each equalto 1. The result follows.

Proof of (ii)): Immediate from (i). |

Let Y denote ad-class symmetric association scheme, with vertex>XsetSuppose
Ao, ..., Aq is a P-polynomial structure fof, with intersection numberpi'} . Fix a vertex
x € X, and writeT = T(x), M* = M*(x), andE* = E*(x) forO <i < d.

There are three matrices inwhich are of particular interest to us (their duals will be
used in Section 4). These are flogveringmatrix L = L(x), theflat matrix F = F(x),
and theraising matrix R = R(x), defined by

d

L= E,AFE, (36)
i=1
d

F=)Y E'AE, (37)
i=0
d-1

R=) E . AFE. (38)

It is easily shown using (25), (21), and (33) that
Al=L+F+R (39)

Recall thatA; generates the Bose-Mesner algeldreso thatA; andEg, . . ., Ej generate
T. Inparticular,L, F, R, andEg, ..., E} generatel by (39).

Lemma 3.2 Let Y denote a d-class symmetric association schevite vertex set X.
Suppose 4 ..., Aq is a P-polynomial structure for Ywith intersection numbers ip Fix
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avertex xe X, andwrite T=T(X), L=LX),and E' = E'(x)forO<i <d. IfY is
1-thin with respect to xthen
(i) for any irreducible T-module W withj&V # O,

LEW=0= EEW=0 2<i <d; (40)
(i) forw e TE}V,

LEfw=0= E'w=0 2<i<d; (41)
(iii) for B e TE:,

LEFB=0= EB=0 2<i <d. (42)

Proof of (i): LetW be given. Fix an integarwith 2 <i < d, and supposé EfW = 0.
Let W’ denote the subspace ¥f defined by

W = EfW + - .- + EW. (43)

Observe by (36)—(38) and (13) th&t’ is closed under multiplication bl, F, R, and
ES. ..., Ej. SinceT is generated by these matric®¥; is a T-module. SinceE;W' = 0
and E;W # 0, W' is a proper submodule a/. SinceW is irreducible, we now have
W’ =0, andEW < W' is zero as desired.

Proof of (ii):  SinceV may be decomposed into a direct sum of irreducibismodules, it
suffices to show that the result holds fore T E;W whereW is an irreduciblel -module.
Fix an integeii with 2 <i < d and an irreducibld -moduleW, and suppose € T E;W

hasL Efw = 0.

SupposeEw # 0. ObserveE; W # 0, since 0# Efw € E'T EfW. SinceY is 1-thin
with respect tox, W is thin and dimE;W < 1. In particularEfw € EW spansEfW, and
LEW = 0. By (i) we haveE*W = 0, andE;'w = 0 for a contradiction. Thugw =0
as desired.

Proof of (iii): Immediate from (ii). ]
Lemma 3.3 Let Y denote a d-class symmetric association schevite vertex set X.
Suppose 4 ..., Aq is a P-polynomial structure for Ywith intersection numbers{}p Fix
avertex xe X, and write L= L(x) and E" = E"(x) for0 <i <d. Then
(i) forl<i=<d-1,

LEi*AH—lEI = pgl_,i+1Ei*,1Ai EI, (44)
(i) for1<i <d,if pj;*; =O0then

LE;AEl = pl,E" A EL (45)
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Proof of (i): Leti be given. Observe by (22), (25), (33), (21), and (11) that

LE* A1 Ef = Ef ,AE*A 4 EX (46)
=E_1A (i Efﬁ) A 1ED (47)
h=0
= E AA 4E} (48)
d
=B, (hzo pg‘,wlAh) S (49)
= P B AEL (50)
as desired.

Proof of (ii): Leti be given, withpilfii1 = 0. Observe as in (i) that

LE’AE; = Ef ,AEAE;} (51)
d
=E',A (Z E;;) AE; (52)
h=0
= E’ ,AAE; (53)
d
=E"_, (Z Pl Ah) El (54)
h=0
= py E AE], (55)
as desired. ]

Proof of Theorem 2.1:  SupposeY is 1-thin with respect tok, and writeL = L(x) and
E* = Ef(x)for0 <i < d. Supposepj, = 0, and suppose for a contradiction thpgt # O
for somei with 2 <i <d — 1. Fixi > 2 minimal with p}; # 0. Then by Lemma 3.3,
0= L(pyE A1Ef — Pii 1 EFAE]), (56)
and by Lemma 3.2(iii),
0= py EfA1Ef — pil,i+lEi*Ai Ei. (57)

The summands in (57) are nonzero by (33) and orthogonal by (32), for a contradiction.
Thusp); =0for2<i <d -1, as desired. O

4. Proof of Theorem 2.2

Our proof is based upon the following result:
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Lemma 4.1 (Cameron, Goethals, Seidel [2]) Let Y denote a d-class symmetric associ-
ation schemewith vertex set Xprimitive idempotents § . . ., Eq, and Krein parameters
qi'}. Fix a vertex xe X, and write A = A(x) forO <i < d. Then

(i) forO<h,h,i,i’,j,j <d,

(E; Aﬁ Ej, Ei/A;:,Ejr) = 6hh’6ii’6jj’k;qir}; (58)
(i) for0<h,i,j <d,
EnA'E; =0 ¢ qf =0. (59)

Proof of (i): Recall t{BC) = tr(C B), and observe by (15), (13), (18), (16), and (17) that

(E;j A;Ej, Ei/A;,Ej«) = tr(E; AL E; Ei/A;,Ej/) (60)
= tr(Ej E;j A;Ei E; ;k],) (61)
= &8 tr(E; A;Ei A (62)
= 8irjir Y (EDya(ARzEizy (Al )yy (63)
y,zeX
= 88/ IXI> Y (Ej)yz(Enxa ENzy(En)xy (64)
y,zeX
= 818/ IXI> Y ((Ei 0 E})En)yx(En)xy (65)
yeX
= 8835/ 1XIaf} D (En)yx(Enxy (66)
yeX
= 3ii/5jj/|x|qir}(Eh’Eh)xx (67)
= Shh’aii’sjj’|x|qir}(Eh)xx (68)
= Snndii- 81 Kig} (69)
as desired.
Proof of (ii): Immediate from (i). ]

Let Y denote ad-class symmetric association scheme, with vertex>XsetSuppose
Eo, ..., Eq is a Q-polynomial structure foy, with Krein parametersh*}. Fix a vertex
x € X, and writeT = T(x), M* = M*(x), andA" = A’(x) for0 <i <d.

Thedual loweringmatrix L* = L*(x), thedual flatmatrix F* = F*(x), and thedual
raising matrix R* = R*(x) are defined by

d
L* = Y E1AE, (70)
i=1
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d

F* = ZEi ALE;, (71)
i=0
d-1

R* = > EaAE. (72)
i=0

It is easily shown using (27), (12), and (59) that
Al =L"+F"+R". (73)

Recall thatA] generates the dual Bose-Mesner algeldrg so thatAj and E, ..., Eq
generatel . In particular,L*, F*, R*, andEg, ..., Ej generatel by (73).

Lemma 4.2 Let Y denote a d-class symmetric association schevite vertex set X.
Suppose k. ..., Eq is a Q-polynomial structure for Ywith Krein parameters i@]. Fix a
vertex xe X, and write T=T(x), L* = L*(x), and A = Af(x)for0 <i <d. If Y is
dual 1-thin with respect to xthen
() forany irreducible T-module W with &V # 0,

L*EW=0= EW=0 2<i <d; (74)
(i) forw e TRV,

L*Elw=0 = Ew=0 2<i<d; (75)
(i) for B € TEy,

L*EfEB=0 = EfB=0 2<i <d. (76)
Proof: Similar to the proof of Lemma 3.2. |
Lemma 4.3 Let Y denote a d-class symmetric association schevite vertex set X.
Suppose k..., Eq is a Q-polynomial structure for Ywith Krein parameters it}l- Fix a
vertex xe X, and write L* = L*(x) and A' = A’(x) for0 <i < d. Then
(i) forl<i<d,

L*Ei A1 B = 00 Bt ATEw: (77)
(i) for1<i <d,ifgy;t; =Othen

L*E;A'E; = g, Ei 1 AYEy. (78)

Proof:  Similar to the proof of Lemma 3.3. a

Proof of Theorem 2.2:  Similar to the proof of Theorem 2.1. |
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