ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Flocks of Infinite Hyperbolic Quadrics

Norman L. Johnson
University of Iowa Mathematics Department Iowa City Iowa 52242

DOI: 10.1023/A:1008692117216

Abstract

Let K be a field containing a nonsquare F = K( Ö{ g} ) F = K\left( {\sqrt γ} \right) a quadratic extension. Let ( K( Ö{ g} ) * ) s+ 1 = K - \left( {K\left( {\sqrt γ} \right)^* } \right)^{σ+ 1} = K^ - , a construction is given which produces large numbers of infinite nearfield and non nearfield flocks of an infinite hyperbolic quadric in PG(3, K).

Pages: 27–51

Keywords: flock; quadric; bol translation plane

Full Text: PDF

References

1. L. Bader, “Some new examples of flocks of Q+(3, q),” Geom. Dedicata 27 (1988), 213-218.
2. L. Bader and G. Lunardon, “On the flocks of Q+(3, q),” Geom. Dedicata 29 (1989), 177-183. P1: rba Journal of Algebraic Combinatorics KL365-02-Johnson November 7, 1996 11:3 FLOCKS OF INFINITE HYPERBOLIC QUADRICS 51
3. R.D. Baker and G.L. Ebert, “A nonlinear flock in the Minkowski plane of order 11,” Congressus Num. 58 (1987), 75-81.
4. M. Biliotti and N.L. Johnson, “Bilinear flocks of quadratic cones,” J. Geom., to appear.
5. M. Biliotti and N.L. Johnson, “Variations on a theme of Dembowski,” Proceedings AMS Conference in Honor of J.G. Ostrom, Marcel Dekker, 1996 (to appear).
6. A. Bonisoli, “On the sharply 1-transitive subsets of PGL(2, pm ),” J. Geom. 31 (1988), 32-41.
7. R.P. Burn, “Bol quasifields and Pappus,” Theorem Math. Z. 105 (1968), 351-364.
8. F. De Clerck and H. Van Maldeghem, “Flocks of an infinite quadratic cone,” Bull. Belgian Math. Soc., Simon Stevin, 2 (1994), 399-415.
9. P. Dembowski, Finite Geometries, Berlin, Heidelberg, New York: Springer-Verlag, 1968.
10. J. Hanson and M.J. Kallaher, “Finite Bol quasifields are nearfields,” Utilitas Math. 37 (1990), 45-64.
11. V. Jha and N.L. Johnson, “Infinite flocks of quadratic cones,” J. Geom., to appear.
12. N.L. Johnson, “Flocks of hyperbolic quadrics and translation planes admitting affine homologies,” J. Geom. 34 (1989), 50-73.
13. M.J. Kallaher, “A note on Bol projective planes,” Arch. d. Math. 20 (1969), 329-333.
14. M.J. Kallaher, “A note on finite Bol quasifields,” Arch. d. Math. 23 (1972), 164-166.
15. W.F. Orr, “The Miquelian inversive plane I P(q) and the associated projective planes,” Ph.D. Thesis, Univ. Wisconsin, 1973.
16. R. Riesinger, “Faserungen, die aus Reguli mit einem gemeinsamen Geradenpaar zusammengesetzt sind,” J. Geom. 45 (1992), 137-157.
17. J.A. Thas, “Flocks of egglike inversive planes,” in Finite Geometric Structures and their Applications, A. Barlotti (Ed.), Rome, 1973, 189-191.
18. J.A. Thas, “Flocks of nonsingular ruled quadrics in PG(3, q),” Rend. Accad. Nat. Lincei 59 (1975), 83-85.
19. J.A. Thas, “Generalized quadrangles and flocks of cones,” Europ. J. Comb. 8 (1987), 441-452.
20. J.A. Thas, “Flocks, maximal exterior sets and inversive planes,” Contemp. Math. 111 (1990), 187-218.
21. J.A. Thas, “Recent results on flocks, maximal exterior sets and inversive planes,” Combinatorics '88, 1, A. Barlotti et al. (eds.), Research and Lecture Notes in Mathematics, Mediterranean Press, 1991, 95-108.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition