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Abstract. LetK be a field containing a nonsquareandF = K (,/y) a quadratic extension. Letdenote the
unique involutory automorphism df fixing K pointwise. For every fielK such that the nonzero squares of
K do not form an index 1 or 2 subgroup d((ﬁ)*)"*l = K, a construction is given which produces large
numbers of infinite nearfield and non nearfield flocks of an infinite hyperbolic quadric (8, KG.
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1. Introduction

A flock of a hyperbolic quadridd in PG(3, K), whereK is a field, is a set of mutually
disjoint conics whose union coveks. K can be either finite or infinite but only the finite
case has been extensively studied.

WhenK is finite and isomorphic to Gg), major results of Thas [20, 21] and work of
Bader, Lunardon [2] completely classify the flocks.

In this case, corresponding to a flock is a translation plane with sgBéad®G(3, q)
such thatSis the union of a set of reguli which mutually share two lines (see [1, 12)).

Furthermore, it is shown in Johnson [12] that a translation plane with spread 8) &G
that admits an affine homology group one of whose component orbits union the axis and
coaxis is a regulus also produces a flock of a hyperbolic quadric.

The major result which allows the classification of flocks of hyperbolic quadrics in the
finite case is that of Thas [20] (theorem 2) which shows that given a flock {3,”G g
odd, and a conic of the flock, there is an involutory homology fixing the conic pointwise
which leaves the flock invariant.

Translating the action of the involutory homologies over to the corresponding translation
plane, it turns out that, for each component of the plane, there is a central involutory
homology fixing this component pointwise and inverting two particular fixed components
L andM.

A Bol translation plane is one which admits a left coordinatizing quasifizkthat has
the Bol axiom:a(b - ac) = (a- ba)cfor all a, b, cin Q. We recall the result of Burn:

Theorem 1.1 (Burn [7]) A translation plane is a Bol plane if and only if there exist
components L and M such that for each component N distinct from L and M there is an
involutory perspectivity with axis N that inverts L and M.
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In a series of articles (see e.g., [10, 13, 14]), Kallaher and Kallaher and Hanson show tha
with two possible exceptional orders*(@nd #), the only finite Bol planes are nearfields.
Actually, combining this with some work of Bonisoli [6], it also follows that the only Bol
planes with spreads in RG q) are nearfield planes.

The flocks corresponding to the regular nearfield planes with spreads(8) ¢§Gave
been constructed with geometric methods by Thas [19] and are therefore called the Tha
flocks.

There are three other nearfields (irregular nearfields) of ordér232 5% which are,
of course, Bol quasifields and which produce flocks of hyperbolic quadrics. These were
independently discovered by Bader [1] and Johnson [12] and for ordearid 23 by
Baker and Ebert [3]. The corresponding flocks are sometimes called the Bader-Baker-
Ebert-Johnson flocks (BBEJ) (see e.g., [21]) or merely the irregular nearfield flocks.

So, by a result of Thas, the corresponding translation planes are Bol planes and by the
work of Kallaher and Bonisoli, these planes are all nearfields planes. The translation of the
requisite theory from the flocks to the translation planes is accomplished in Bader-Lunardon
[2] (see pp. 179-181). Furthermore, Thas has shown that there can be no nonlinear floc
of a hyperbolic quadric of even order in P%2").

Hence,

Theorem 1.2 (Thas, Bader-Lunardon) A flock of a hyperbolic quadric in P@, q) is
either

(1) linear,

(2) a Thas flockor

(3) a BBEJ flock of order pfor p = 11, 23, or 59.

Now we consider what can be said for flocks of infinite hyperbolic quadrics.

It has been an open question whether the results on flocks of finite hyperbolic quadrics
may be extended to the infinite case.

In particular, is it true that corresponding to an infinite flock is an infinite translation
plane? Furthermore, if there is a translation plane, is the plane Bol?

In Section 2, we show algebraically the connections between flocks of hyperbolic quadrics
in PG(3, K), K afield, and translation planes with spreads in®®&) composed of a set
of reguli that share two components.

Hence, corresponding to an infinite flock is an infinite translation plane exactly as in the
finite case. However, even if the translation plane would turn out to be Bol, there is no
theory which could then be utilized to show that the translation plane is a nearfield plane.

Actually, Burn [7] has constructed some Bol planes which are not nearfield planes with
spread in P@3, Q) whereQ is the field of rational numbers. We show that these planes
produce infinite non nearfield flocks of a hyperbolic quadric.

The main ingredient which specifies translation planes that produce flocks is that there
is what might be called a “regulus inducing” homology group.

In the finite case, a nearfield flock plane which is not of ordé; 2%, 59 is an Andg
plane. In fact, a finite Andrplane which admits the regulus inducing homology group
must be a nearfield with applying the classification theorem of Thas, Bader-Lunardon.
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So, a natural place to look for examples of flocks in the infinite case which might not
quite fit the restrictive pattern of the finite case would be to consider the infiniteeAndr”
planes which admit regulus inducing homology groups.

In Section 3, we completely determine the set of Angdlanes which produce the type
of translation plane corresponding to a flock of a hyperbolic quadric. All of these planes
are Bol planes.

Recall that, in the finite case, all such planes are nearfield planes and there is a uniqu
nontrivial nearfield plane of each order.

In the infinite case, we see that the situation is much more complex and different.

In fact, there are field& such that there are infinitely many mutually nonisomorphic
nearfield planes with spreads in BGK).

So, there are infinitely many mutually nonisomorphic flocks of a infinite hyperbolic
quadric in PG3, K).

As mentioned, a major unsolved problem in the general case is whether all hyperbolic
flocks are Bol flocks in the sense that the associated translation planes are Bol planes.

Recently, Riesinger [16] considered spreads ift®® ), K a field, that consist of a set
of reguli that share two lines.

Furthermore, Riesinger provides a class of examples which produce 4-dimensional trans
lation planes with 6-dimensional collineation group when the planes are considered as
topological projective planes.

As we show in Section 2 that translation planes with spreads of the indicated type corre-
spond to flocks of a hyperbolic quadric in B&K), then there are some new flocks which
we call the flocks of Riesinger.

In Section 6, we point out that these flocks are not Bol flocks.

2. The correspondence

Theorem 2.1

(1) Let F be a flock of the hyperbolic quadrigx4 = Xox3 in PG(3, K) represented by
homogeneous coordinaté€s;, X», X3, X4) where K is a field. Then the set of planes
which contain the conics in F may be represented as follows

Po « X2 = X3,

i Xg — txo + f(t)xs — g(t)xqy = Ofor all t in K where f and g are functions of K
such that f is bijective.

(2) Corresponding to the flock F is a translation plame with spread in P@3, K) written
over the corresponding-dimensional vector space,\ver K as followsLet V, =
(X, y) where x and y ar@-vectors over K. Then the spread may be represented as
follows

y:x[f(&)u g(ttdu]’ y:x[g S} x =0, forallt,vandu# 0in K.
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which contains two affine homology groups whose component orbits union the axis

and coaxis define the reguliegulus nets
(3) Atranslation plane with spread in PG, K) which is the union of reguli that share two

components may be represented in the f¢2m

Equivalently a translation plane with spread in RG, K) which admits a homology
group one of whose component orbits union the axis and coaxis is a regulus may be
represented in the forr2). In either casesuch a translation plane produces a flock
of a hyperbolic quadric in PG, K).

Proof: This result is known in the case thitis finite and can be found in Johnson [12].
Furthermore, one can use the Klein quadric to verify the translation back and forth between
the flocks and the planes (see Section 6). The only possible question with this constructior
is whether a cover of the vector space produces a cover of the quadric and conversely
We shall provide an algebraic proof that a translation plane with the required properties
produces a hyperbolic flock and leave the proof that the flock gives rise to the translation
plane to the reader.

Suppose that a translation plane with spread if3@&) admits an affine homology
group one of whose component orbits union the axis and coaxis is a régjiiidG(3, K).
Choose arepresentation so that the axysis0, the coaxix = 0 andy = x isa component
(line) of the reguluR. ThenR is represented by the partial spreae- 0, y = x[§ 9] for
all vin K. Moreover, the homology group takes the matrix form:

0 0O
uisin K — {0}

oo oR
O o

1 0
0 u
0O O u

There are functiong andg on K and components of the following matrix form:

y=X [ fit) git)] for all elementd of K.
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Note that, in particular, this says that the functibris 1-1 as otherwise, differences of
certain corresponding matrices are singular and nonzero contrary to the assumption the
the components form a unique cover of the vector space. The homology group maps thes
components inty = x["®" 994 for all nonzerou in K. Hence, the reguluR and these
components for alb, t, u £ 0 in K define the spread in RG, K).

Take any valua in K and consider the vectgl, —a, 0, 1). Since this vector is not on
x = 0 ory = xvl and we are assuming a “cover”, there is a unique gait) with u
nonzero such thatl, —a, 0, 1) is incident with the component = x["V! 9Y¥] Hence,
we havef (t)u — au = 0 andg(t)u — atu = 1. In particular, since is nonzero, we must
havef (t) = a. Hence,f is “onto”.

In order to see that the planes listed in the theorem intersected with the hyperbolic quadric
in PG(3, K) form a unique cover of the hyperbolic quadric and hence define a hyperbolic
flock, we must show that for all points, b, ¢, d) for b # c andad = bc, there is a unique
t in K such that the point is on the plane Since we have a cover of the 4-dimensional
vector space, we know that for a vecter h, m, n) where not botte andh are zero and
{((m, n)) is not in {(e, h)), there is a unique ordered p&fr u) such that(e, h, m, n) is on
the componeny = x[ f4 90Uy,

To distinguish between points of R& K) that relate to the flock and vectors\gfwhich
relate to the translation plane, we shall use the terms “points” and “vectors” respectively.

That is, for alle, h, m, n such that not botle andh are zero and the vectom, n) is not
in the 1-space generated g h), there is a unique ordered pé&it u) such that

ef)u+hu=m and egt)u+htu=n. Q)
The point(a, b, ¢, d) is onz if and only if
a—Dbt+ f(t)c—gt)d=0. (2)
First assume thdic # 0. Then, without loss of generality, we may talie= 1 so that
ad = c (recall that the point is considered homogeneously).
Hence, we require that the poifad—, 1, c, d) for ¢ # 1 is contained in a unique plane
m¢. This is equivalent to the following equation having a unique solution:
c—dt+ f(t)ed — g(t)d? = 0. (3)
Consider the vecto(l, d~1, 1, cd™1). Since(l, cd1) is in ((1,d™1)) if and only if
¢ = 1, there is a unique ordered pé, u) such that2, 2) is satisfied with(e, h, m, n) =
(1,d™ 1,1, cd1) so that
ftou+dlu=1 and g(to)u+dteu=cd™. (4)

Hence, we must have

cd(f(to) + d"hHu = (g(to) + d~t)u  sothat
c—dt, + f(to)cd — g(to)d? = 0.
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Now to show uniqueness. Firstassume th@t)d+1 = 0=z Theng(t,)d+t =0=w
and the vector1, d =2, 0, 0) is on the component = x["9? 9] andy = 0, whichis a
contradiction. Hencew # 0.

So,w = zcd tandthe vectofl, d 1, z, zcd ™) is on the component = x[ "¢ 9o},

Now assume that there exists another elersgatich that

c—ds + f(s)cd — g(s)d* =0

Then f (s)d + 1 = z* # 0 and there exists an elemeanin K such thatz*v = z.

Thenthe vectofl, d*, z, zcd™) = (1, d ™%, z*v, zZ'ved 1) is also ony = x[ o soa],

By uniqueness of the vector space cover, |t follows thatd) = (s, dv). Hence, there is
a unigue planer; containing the pointa, b, c, d) such thab # c andad = bcwherebc
iS nonzero.

Now assume thatc = 0. If b = 0 andd = 0 then without loss of generality, we may
takec = 1 so we are considering the poiat, 0, 1, 0). We need to determinetan K such
thata + f(t) = 0. Sincef is 1-1 and onto as noted above, there exists a unique value
which solves this equation and hence a unique plarentaining the poinga, 0, 1, 0).

If b = 0anda = 0 andc = 1, it is required to uniquely cover the poif, 0, 1, d)
by a plane so we require a unique solution to the equatidin — g(t)d = 0. Note that
the vector(1, 0, d, 1) must be incident withy = x['{P" 9] for some ordered pair
(t1, u). This implies thatf (t;)u = d andg(t;)u = 1 so thatf (t;) = g(t;)d. Moreover,
f(t)) = z1 # 0 as otherwise the spread would contgir= X[ tl] Hence, the vector
(1,0,21,z1/d) isony = x["{V g“1)] I there exists another solutia then f (s;) = z
and there exists an elememntof K such thatzfw = z;. Hence, the previous vector also

belongs toy = [f(sl)“’ g(sslllf,“] which, by uniqueness of the vector space cover, implies
that(t;, 1) = (s, w).

If c = 0thena = 0ord = 0 andb = 1 without loss of generality. We are trying to
show that there is a unique solutiond@c-t + g(t)d = 0. If d = 0 this is trivial. Thus,
assume tha = 0.

The vector(d?, —, d, 1, 0) must be incident witty = x["(?" 92)“], for some unique
pair (t2, u). Thus, there is a solutioty to d(f (t)d — DHu = 1 andd(g(tg)d —bu =
0. Let f(th)d —1 = z # 0. Then the vectorl, —d~1, z,, 0) is on the component
y =x["®? %21 so clearlyz, # 0.

If there is another solutiors, then let f(s)d — 1 = Z so that there exists an
elementw such thatzZyw = z,. Hence the previous point is also on the component
y = x["@ 9291 so by uniqueness, we must hate, d) = (s, dw). Hence, a
translation plane with spread in P& K) which admits an affine homology group of the
type listed above produces a flock of a hyperbolic quadric.

To complete the proof of part3), we must show that if a translation plane has its
spread in P@, K) and the spread is a union of reguli sharing two components, then
there is a homology group of the type mentioned above. We coordinatize so that a given
regulus net has the standard foxm= 0, y = X[ S]for allvin K. Lety = x[2 g] be a
component not in this regulus net. Since the component is in a regulus net, change base



FLOCKS OF INFINITE HYPERBOLIC QUADRICS 33

by (x,y) = (X, y[2 3]*1). After the basis change, the second regulus must have standard
form. Now mapping back with the inverse basis change, it follows that the second regulus
must have the basic form= 0,y = 0, y = x[® Pul,forallu# 0inK.Hence, it follows

that the translation plane must admit the indicated homology group withyasd<) and
coaxisx = 0. This proves3).

To prove (1), we may choose a basis so that a given plane of the flock has equation
X2 = X3. From here, it is fairly direct that we may represent the flock in the form given.
The functionf (t) is 1-1 to avoid intersections and must be onto in order to ensure a cover.

The proof of(2) follows along the lines of the pro@B) and is left to the reader. O

3. Andre quasifields of flock type

In this Section, we completely determine the Amgtanes with spreads in P& K) which
produce or correspond to flocks of hyperbolic quadrics iP & ).

Let K be a field which contains nonsquares. kdbe a nonsquare arfd = K (/).

Let Xr denote the Pappian affine plane coordinatized-bgnd write the components
of the plane ax = 0, y = xmfor all min F. We consider the construction of the Ardr’
planes (quasifields) with kernel containiKg Letos denote the automorphism of order 2
which fixesK pointwise.

We propose to construct all of the Aredplanes that admit the Pappian collineation group
H ((X,y) = (Xv,yu) | u, v in K*) and which contain the standard regulus net. This is
equivalent to constructing translation planes whose spread is (8, KG and which is the
union of reguli sharing two components. We have seen in Section 2 that such a translatior
plane is equivalent to a flock of a hyperbolic quadric in(BAK). We call such translation
planeshyperbolic flock planes

Let Ry = {y = xm | m*” = §},§ in K*. LetK(/»)**™ = K~. Let Sdenote the
subgroup of nonzero squaresknand note thaS is a subgroup oK ~. We call such a
partial spread (or net generated by this partial spread) aneApaltial spread (or Andr”
net). The replacement or derivation of the Aadét is accomplished by replacifiy by
the opposite regulus n& = {y = xm | m*® = §}.

We define an Andr ' multiplication:

xxm=x"""""mwhereg is any mapping fronk ~ into Z,
(or GH?2)) such that §j = 0.

In order that this produces a multiplication for which the elements afre in the center,
and we have that+m = xmfor all x in K (juxtaposition shall denote multiplication k),
mtog = 0 for allmin K*. This is accomplished if and only if?g = O for all « in K*.

If we consider this by the replacement or nonreplacement of variouseArads then we
do not replace any AndrhetR; wheres is a square irkK —.

Consider the image dRs underH : y = xm — y = xmw for all w in K. And, since
(mw)**e = m'*7w?, it follows that wheneveR; is replaced byR}, we also must replace
Rga2 by R; . for all  in K*.
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Hence, in order to obtain non-Pappian translation planes of this type, we must have tha
K~ properly contains the subgroup of nonzero squ&esK*. For example, iK is the
field of real numbers angl mapsm = o +ip ontoa —ip for «, g in K thenm®*! = 24 2
which is positive so a square. In other words, the grblupcts transitively on the set of
all André nets in this case. Since we have agreed not to reftagenve do not obtain a
non-Pappian plane. Hendg, cannot be the field of real numbers.

We note that the images gf= xmor y = x?m underH union the components = 0
andy = 0 form reguli in PG3, K).

Consider the quotient groug —/S. Since each element of this group has order 2 or 1,
it follows that this group is an elementary Abelian 2-group. Hence, we may consider this
group as a vector space over @k

When we choose the set of Arednets Rg} to replace, we must replace all corresponding
netsRg,2. This corresponds to the selection of a subiset K~ /S which we map undeg
to 1 and all other elements of the vector space map to 0. We have the conditiardties
not contain the identity element or rather that we do not replace thee/strare netR,»
in order to obtain the central property that we require. The property that we obtain using
the groupH in the associated Andrplane is equivalent to havirg in the right nucleus
(thatis,(a* b) * @ = (a* (b * «) for all a, b in the quasifield and ait in K).

Hence, we obtain the following:

Theorem 3.1

(1) The set of Andr quasifields constructable from a field £ K (,/y) with K in the
intersection of the center and right nucle@s., the Andé quasifields of hyperbolic
flock type are obtained by any mapping from S to GKR2) such that the identity
(zero vectoy is mapped ta) where K- = (K(\/?)*)(erl and o is the involutory
automorphism fixing K pointwise.

(2) The set of Andr nearfields of hyperbolic flock type are obtained by the choice of a
linear functional of K~ /S considered as a GB)-vector space. Hencg¢here is al-1
correspondence between the set of Andearfields of hyperbolic flock type and the
dual space of K/S.

Proof: We have noted that any Angliquasifield of the type constructed above has the
required properties of having in the intersection of the center and right nucleus. By the
previous section in which the equivalence of spreads i(BPK) which are unions of reguli
sharing two components and spreads containing reguli and an affine homology group one o
whose component orbits union the axis and coaxis is a regulus is shown, it follows that the
above procedure is the only way to produce Anduasifields with the required properties.
Hence, we have the proof to (1).

An André nearfield is produced exactly when the multiplication defines a group. This
translates to having the mapping g above a homomorphismHirornmto Z,. When consid-
ered as acting oK ~ /S, the required mapping induces a homomorphism fiony Sinto
GF(2). That is, we have a linear mapping from a vector space ov€RdRto its associ-
ated scalar field GR). In other words, each nearfield of hyperbolic flock type corresponds
exactly to a linear functional df ~ /S so that the nearfields are in 1-1 correspondence with
the dual space dk —/S. ]
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Theorem 3.2

(1) Let(K (/)" = K~. Suppose the dimension of KS is finite. Then the number
of ways of constructing Andrplanes of hyperbolic flock type from a given quadratic
extension field is exactlg® /S-1, Furthermore the zero map corresponds to the
Pappian plane.

(2) If the dimension id (order 2), there are exactly two Anérquasifields of hyperbolic
flock type.

Since any mapping of.0nto Z, which map®to0is either trivial orahomomorphism
it follows that the two Andr quasifields of hyperbolic flock type are the field F itself
and a nearfield (For examplein the finite field case of odd ordethis is precisely the
situation)

(3) Any field which is an algebraic extension of a finite field of odd order but not a set of
guadratic extensions of quadratic extensions will also produce exactly one nontrivial
nearfield of hyperbolic flock type.

(4) The number of non nearfield Ariquasifields of hyperbolic flock type is exactly
2IK7/S=1 _ 2d where d= the dimension of K/S= log, |K~/S.

(5) If the dimension of K/S is infinite there are infinitely many Anérquasifields of
hyperbolic flock type which are not nearfields.

Hence if the dimension of K /S > 2then there exist Anérquasifields of hyperbolic
flock type which are not nearfields.

Proof (3): We need to show only that the subgroup of nonzero squares is of index 2 in
(K (\/7)*)”“ = K~. Letaandb be nonsquares. Sineeb generate a finite field over the
given field, it follows that the product of these two elements is a square. It is only required
that there exist nonsquares in the field since it follows (h’a(t\/?)*)‘”rl =K~ =K*in
this case. For example, note that + u)°+! = u? — yt? for u,t in K and{e, 1} aK
basis. Restricted to a finite field isomorphic to @JFcontainingy, u?> — yt2 takes on both
squares and nonsquares and iS@F. If the nonsquares do not remain nonsquarels in
thenK is a series of quadratic extensions. Since the set of squakefonms an index two
subgroup in the case under question, then= K*.

(4) and(5) follows directly from the above results ag2l1). O

Theorem 3.3 Let K be a field, S the set of nonzero squares of K 6K1dﬁ)*)"+l
= K~. Assume that the dimension of KS > 1.

(1) Then each of the Andérquasifields constructed from a given quadratic extension field
which have the property that the center and right nucleus contain K is a Bol quasifield
and constructs a flock of a hyperbolic quadric in BGK).

(2) Ifthe dimension of K/S > 2 then there exist infinite flocks of a hyperbolic quadric in
PG(3, K) which are not nearfield flocks.

Proof: By (3.2) and(2.1), it remains only to show that the Arglfuasifields constructed
as in(3.1) are Bol quasifields.

We mentioned the Bol identity in Section 1. When considering the Bol identity in the
form presented, components are written in the general fogam- x. Since we are writing
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multiplication on the opposite side, the Bol identity takes the form:
((cxa) xb)xa =cx* ((@ax*b)*a) for all elementsa, b, ¢ of the quasifield.

Write x x y = x°¥y whereos (y) = ¢¥""9. Then the Bol identity takes the following
form:

e @D @godo@pr©g — cr@agebe@pe©g sinceo (x°@) = o (x) for all x, z.

(See also [7] (2.6) for the same calculation in the finite case.)
Hence, we must check thet@e®@ — ¢7@ba Thys, we have to verify that

o @7 ebg i aquivalent tay @D
or equivalently, that

lerag — (azb)lJ“’g mod 2
Whenever we replace an AranetR; , we also replace the set of AranetsR;,. for all
o in K. Lettingb!™® = g andal™® = «, the last congruence becomgs = «?f g mod 2

which is the congruence statement of our replacement procedure.
Hence, all of the And¥'quasifields constructed above are Bol quasifields. a

4. The flocks and isomorphism

From Section 3, given a field and multiplicative subgroup of nonzero squares, K ~/S

has dimensior 2, we may construct at least one non nearfield flock of a hyperbolic quadric

in PG(3, K).

In this section, we consider possible isomorphisms between the flocks. We consider
two flocks within the same projective space to be isomorphic if and only if there exists an
element ofPT'L (4, K) which preserves the hyperbolic quadric and which maps the conics
of one flock onto the conics of the second flock. From the standpoint of the associated
translation plane, we may consider two translation planes defined on the same vector spac
and sharing the two components which are common to the set of reguli of each spread
There is a corresponding isomorphism which will either fix or interchange the two common
components and be AL (4, K). Conversely, for the planes constructed in Section 3, we
shall see later than any isomorphism of planes permutes the regulus nets associated wi

the flock and hence induces an isomorphism of flocks.

Theorem 4.1 Two flocks of a hyperbolic quadric in R& K) constructed as in Sectidh

are isomorphic if and only if there is an isomorphism of the corresponding translation

planes which fixes the two common components of the base reguluseratstes the base
regulus netsand belongs ta'L (4, K).
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Proof: Since each of the planes constructed in Section 3 are Bol planes (with respect to
the linesx = 0,y = 0 or rather infinite pointg0) and (c0)), it follows from Kallaher

[13] (Corollary 3.2.2) that the poiniec) and(0) are fixed or interchanged by the full coll-
ineation group of the plane. Moreover, considering there are collineations interchanging
the two indicated infinite points, we have the proof4dl). |

We also note that any Desarguesian plane constructed as in Section 3 is actually Pappia

Theorem 4.2 If 7 is a Desarguesian plane with spread in BB5K) for K a field which
contains a K-regulus thenis Pappian.

Proof: If the spread contains a regulus and the regulus netis coordinatized in the standarc
manner then the coordinate quasifi€ddcontainsK in its center. Lef1, e} be a basis for

Q overK as a vector space. Assume ti@tis a skewfield. Then, fow, 8,8, o in K,

(o + Be)(8 + pe) = ad + (B8 + ap)e+ Bpe? and sinceK is a field, it then easily follows

that, in this case, the quasifield must be a field provided it is a skewfield. a

We recall that a linear flock is one where the planes of the conics of the flock share aline.

Theorem 4.3

(1) A linear hyperbolic flock in P@, K) corresponds to a Pappian plane coordinatized
by a quadratic field extension F of.K

(2) Twolinear hyperbolicflocksin P@, K) areisomorphicifand onlyifthe corresponding
quadratic extension fields are isomorphic.

(3) There exist fields K such that there are infinitely many mutually nonisomorphic linear
hyperbolic flocks in PG, K).

Proof: Using the notation of Section 2, we may assume that there is a common line of
the form({(1, 0, 0, b), (a, 1, 1, ¢) whereb is not zero anda is not equal ta) wherea, b, ¢
are elements oK.

If (1,0, 0, b) is common to the planes denotedaythen it follows thatg(t) = b~ for
alltinK.

Similarly, if (a, 1, 1, ¢) is common to the planeg thenf(t) =t + b lc—a=t+d.

The corresponding translation plane has components of the form

—1
y =X [(t +ud)u btuu] andy = x [8 S] forallt,u, vin K andu # 0.
It follows easily that the spread is additive and multiplicative so that the spread is
Desarguesian and hence Pappian by the above note (4.2). Moreover, the coordinate fielc
are quadratic extension fields Kf

Two linear flocks are isomorphic provided the corresponding Pappian planes are iso-
morphic if and only if the corresponding coordinate fields are isomorphic. This proves (1)
and (2).
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To prove (3), we note that there are infinitely many mutually nonisomorphic quadratic
extensions of the field of rationals. For example, take théfsef all integer primes. Then

Q(/P) is not isomorphic toQ(,/q) since mapping/p to a,/q for a in Q implies that
a? = p/q which cannot be the case. ]

Lemma 4.4 Letmr; andx, be non-Pappian Bol planes constructed from a given Pappian
plane ¥ coordinatized by Fa 2-dimensional field extension of)kas in Sectior8. Letv
be an isomorphism of; onto,.
Thenv may be represented by a K -semilinear mapping of the fatrg) — (x? A, y*B)
for 2 x 2 K-matrices AB and X = (X, X2)” = (xf, xg), wherep is an automorphism
of K.

The reader should note the difference betweémlafined above and’xwhich is the
image of an element of the field under the automorphism.

Definition 4.5 In the planes under consideration, there is a Pappian affine plaroer-
dinatized by a quadratic extensiénof K.

The lines of the constructed translation planes have the formc,y = xm+ b or
y = x? m+ bform, b, cin F whereo is the unique involution in GalF.

The set of lines without a superscriptshall be called the unreplaced netand the set
of lines corresponding to those with a supersasighall be called the replaceable riet

The net replacindR (consisting of the liney = x“m + b for y = xmin R) shall be
denoted byR* and called the replacing net.

There is a multiplication: defined as followsx « m = x*° mwhereg = 0 or 1 if and
only if y = xmis inU or R respectively.

Remark 1 The Ande netsR are regulus nets with opposite regulus Rét

Proof: Note thaty = x°nmeetsy = xmfor n°*+! = m°+! = « if and only if there exists

a solution toxm = xn which is valid if and only ifx}~* = (m/n). Since(m/n)°** =1,

it follows by Hilbert’s Theorem 90 that there exists an elemestich that'~ = m/n.
Thus, the liney = x?n meets every ling/ = xmand is contained in the union of such

lines. |

Proposition 4.6 All of the planes constructed as in Secti®@admit the following colli-
neation groups

H: ((x,y) — (ax, by) where albis in K*),

B: (ta: (X,y) = (Yxa, xxab)).

Both groups leave invariant RR*, and U.

Furthermore the full collineation group of the plane normalizes the group({x, y) —
(Xv, yu) for all u, v in K).

Proof: Note that juxtaposition denotes multiplication in the fi€ldand denotes quasi-
field multiplication in the associated constructed Andriasifield.
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The replaced neR*consists of a set oK-regulus nets defined by Baer subplanes of
3. The kernel homology group defined by the mappitgsy) — (ax, ay) for all a in
F then acts as a collineation group of any constructed translation plane. Since by the
construction, the planes also admit the group whose elements are defined by the mapping
(X, y) = (xu, yv) for all u, v in K, it follows that the planes admit the collineation group
H. Since we have shown that the planes are Bol planes, it follows that the planes admit the
groupB (see Burn [7]). However, we wish to show that the indicated nets are left invariant.
First assume that = xcis in U and note that it follows by construction that= xc*
is also inU. Then, in the constructed planex ¢ = wcandw ¢! = wc™t. Then under
the mapping., we havey = xm — y = xm1c=2, andy = xm — y = xm—2¢- 3+,
Recall that when we replace an Aedegulus neR; then we also replace the set of Ardr”
netsRs,. for all @ in K*. Hence, itis clear that is a collineation of the plane whegn= xc
isinU. Similarly, wheny = xcisin R, then the form of. becomesgx, y) — (y°c, x°c™1)
andy = xmmaps toy = xm°c 2 andy = x’m maps toy = x°m~1c~ 1+,
It remains to show that the groibis normal in the full collineation group assuming that
the plane is non-Pappian. Clearty,normalizesN. Hence, we may assume a collineation
f fixesx = 0 andy = 0 and has the basic foriix, y) — (x? A, y?B) where A, B are
2 x 2 K-matrices as inf4.4). It follows that sinceA and B commute withul, andu” is in
K, f clearly normalizes the groud. Hence, this completes the proof @6). o

Lemma 4.7 In a plane constructed as abaqvé a collineation h maps y= x into a
component of Rthen U and R are interchanged by h.

Proof: By (4.6), h either fixes or interchanges= 0 andy = 0. If hinterchanges = 0
andy = 0 thenht; fixesx = 0 andy = 0 and still maps/ = x into a component oR* as
the groupB fixes R*.

Hence, we may assume without loss of generality thiatesx = 0 andy = 0.

We note that the groupl of (4.6) acts transitively on the nonzero pointsyt= 0 and
leaves each of the neR®, R*, U invariant. Hence, we may assume thafixes a given
nonzero point say0, 1, 0, 0) ony = 0.

By (4.4), we may represerit as(x, y) — (x? A, y?B) for 2 x 2 nonsingular matrices
with elements irK . Note that0, 1)? A = (0, 1) ifand only if A = [ ?] Moreover,y = X
maps toy = x°m for some elementn of F. Hence, recalling the notation developed in
Section 3, we havg = x?m represented ag = x[‘o1 ‘ﬂ[‘t‘ "' for someu, t in K wheret
is nonzero. It then follows thad='B = [* ']

Since we are trying to show thiat and R* are interchanged by, we assume that there
is an elemeny = xn = x[% »° in U which maps back int&J. Note that we assume
that s is nonzero as otherwise, this is merely an element of the regulus net containing
y =X,y = 0, X = 0 which must map intdR* due to the existence of the normal groNp

The image ofy = xnis

a1 | w (v _[at —al[w ¢s)”][a b|[-u —yt
e MR IS St | O | | il
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which is the matrix x):

u(bs® — w”) +ta s’ (y? —b? ypt(bs® — w”) +ua s’ (y” —b?)
[ t(bs’ + w”) — uag u(bs’ + w”) — as’ty } ’
We note that the general form for the componentsis x[£' 7] for elementsy, k of K
where+ is + if and only if the component is ib). Hence, we may equate tlig, 1) and
(2, 2) elements of the previous matrix and obtain the rela{ibr?) = y (2, 1).
This results in the following two equations:

2uw’ =st(ay +a H(y” —b%) (5)
and
2ytw? = us’(ay +a 1(y” — b?)). (6)
If ay +a~1(y” — b? # 0 then sincest is nonzero we may divide (5) by (6) to obtain

u/yt=t/u (7)

whichis validifand only ilu? = yt?whichis contrary to the assumption thei nonsquare.
Hence, we must obtaifay + a~1(y” — b?)) = 0 which in turn forcesy = 0.
Now certainly there exist components df of the general forny = x[% ’°] for ws

nonzero since for example we are not replacing any component suab’thags® = 1 (or
square).

By the above note, none of these components can maplistomust map intéR*. This
means thatin the above equation the mat#) forces the entry equationél, 1) = —(2, 2)
and—y(2,1) = (1, 2). Simplifying, we obtain the following two equations:

2ubg’ =ts’(ay —a t(y” — b?) (8)
and
2ythbs” = us(ay —a l(y” — b?). (9)

From above, we know thaty + a~1(y” — b?) = 0soay —a 1(y” — b?) #0.

Sincets # 0, dividing (8) by (9) forcesu/yt = t/u which is a contradiction as before.

Hence, we have a contradiction to assuming that gnee x maps intoR* then some
element ofU maps back intdJ. Hence, every element &f must map intoR*, and by
using the inverses of the elements above, every elemdrit ofust map intdJ. That is,U
andR* are interchanged by the collineation. a

Theorem 4.8 (The interchange theorem) In a non-Pappian Bol Andrplane constructed
as in SectiorB, the unreplaced net and replacing net are either both fixed or interchanged
by a collineation of the plane.
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Proof: LetU and R* denote the unreplaced and replacing nets respectively.j bet
a collineation of the plane. Suppose that some compoyeatxm of U maps intoR*.
Change bases by the mappmgx, y) — (x, ym~1). Then anisomorphic plane is obtained
with corresponding unreplaced and replacing ttsand R*h respectively.

Let

U™ ={n* |y=xnisinU}andR*™ = {n**° | y = x’nisin R*}.

Recall, tha® in U -implies thatsa? is in U~ andg in R*~ implies thatBa? is in R*~
forall @ in K.

Letm'*’ = a,. Then(Uh)~ = U, and(R*h)~ = R*«a, (use the analogous defini-
tions for the indicated subsets Kf). So,s in (Uh)~ implies thatsa? is in (Uh)~ andp in
(R*h)~ implies thata? is in (R*h)~. This shows that the isomorphic plane has exactly the
same groups acting on it and in the same representatibinaagiN above in the statement
of (4.6).

By the previous lemmay~—jh interchange$) h and R*h so thatj interchange$) and
R*. O

This argument is actually more general and proves the following isomorphism theorem.
We shall denote a translation plane constructed from a given Desarguesian plane b
replacement oR and nonreplacement &f by U U R*.

Theorem 4.9 Letwr; = U; U R} andr, = U, U RS be isomorphic non-Pappian Arér
planes constructed as in Secti8n

Then an isomorphism fromy ontor, either maps Y onto U, and R onto R or maps
Ui onto B and R onto Us.

Proof: We consider the two planes to share the componentsO, y = 0, y = X. Any
isomorphism must fix or interchange= 0 andy = 0 or otherwise one of the planes will be
Desarguesian by Kallaher [183.2.1) or (3.2.2). Since the planes are Bol, we may assume
that the isomorphism fixes= 0 andy = 0 and thus has the form of the collineation of a Bol

plane used in the proof @#.8). Because the general form (componepnts x[ik” i3)"‘])

of the components of either Bol planes is the same, we may use the argunié:&) ab
prove(4.9). a

Corollary 4.10 Letw be anon-Pappian Anérnearfield plane constructed as in Sect®on
from a Desarguesian plang coordinatized by the field extension F of K. Let U and R
denote the unreplaced and replacing nets so that U U R*.

Then there is a collineation which interchanges U and R

Proof: Certainly there is a homology group with axis= 0 and coaxisy = 0 which
acts regularly on the points on the line at infinity distinct fr¢dn and(co). By (4.9), the
conclusion follows immediately. ]

We require a proposition on the determination of fields with large intersections.
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Proposition 4.11 Let X and A be Pappian planes coordinatized by quadratic extension
fields /sy and F, respectively of a given field KWe consider the two spreads within
PG(3, K) so the planes may be considered as defined on the same points.

If the two Pappian planes share a net which properly contains a K -regulus net then the
two planes are equal and consequently the two fields are identical.

Proof: We take the regulus net to be defined in the standard way as the net defined by
the partial spread = 0,y = 0, y = xk wherek is in K . If a net properly contains this
regulus net then we may define a common subfield of the two fields in question. Itis trivial
to verify that any subfield of a quadratic extensiorkofind properly containingl is the

field itself. HenceFsx = Fa4. O

Theorem 4.12 The isomorphism classes of Aidnearfield planes constructed as in
Section3 from a given Pappian plan& coordinatized by a field extension F of K are
in 1-1 correspondence with the set of orbits of subgroups of index twoofSKunder
the automorphism group of K where S is the subgroup of nonzero square$ ahdK
K- = Fx(c+D,

The automorphism group of K induces a natural action on the dual space gEkas
a GF(2)-vector space and the isomorphism classes of non-PappiareAwdrfield planes
of hyperbolic flock type are it-1 correspondence with the orbits different from the zero
vector of the automorphism group acting on the dual space.

Proof: Letw; andx, be isomorphic and non-Desarguesian Andearfield planes con-
structed fromX as in Section 3 and lgt be an isomorphism from; ontow,. By the use
of the collineation group, we may assume thdixesx = 0 andy = 0. By (4.9), we may
assume that ifry = U; U R thenp mapsU; ontoU,, mapsR; onto R} and hence maps
R; onto R,. In particular, by(4.11), p is a collineation of the associated Pappian plEne
We note that since a non-Pappian nearfield plane is obtained by a homomorpkism®f
onto GK?2), it follows that the kernel of the homomorphismus /S.

Thus, we may represeptin the form(x, y) — (x“a, y”b), wherea, b are inF and
o denotes an automorphism &f and extend td=. Note thaty = xm of U; maps to
y = xm”(a—tb) and some image must he= x. Furthermore, for any automorphism
w of K, extend to an automorphism &f so that ifk = n°*! thenk® = n®©@+D, Note
that if (et + u)°+! = u? — yt? then (et® + u®)°*! = u® — yt? so thatw acts on
(K(ymH =K.

Hence, it follows thata=tb)**om>@+e) = 1 so thati@a=h)}** = kisin Uy~ (recall if
kisinU; soisk~!and alsoqU¢)~ is denoted byJ;"").

Using the notation developed {@.8), we must havé);” map toU, , so that the above
implies that asy = xn in U; maps toy = xn“a~!b thenn in U; implies n®™®*) in
Uy, SinceUy~ is a subgroup oK ~ as noted above, an@b)**7in U~ implies that
(n®a~th)*7 isin Uy, so it follows thaty, = Uy’~. Hence, an isomorphism of the two
planes is uniquely determined by an automorphisri of

Now if 5 is in the dual space df ~ /S, andw an automorphism oK, we definen® as the
mapping which takegSonto (”S)n. A homomorphism with kernelU; /Sthen defines
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a homomorphismy® with kernelU;””/S. Hence, the set of isomorphism classes of non-
Pappian Ande nearfield planes of the type under consideration is in 1-1 correspondence
with the orbits of the automorphism group kfacting on the dual space &~ /S. m]

Corollary 4.13 If the automorphism group of a field K is trivial and there is a quadratic
field extension F of K then the set of isomorphism classes oféeAmekrfield planes of
hyperbolic flock type constructed from the Pappian plane coordinatized by F lislin
correspondence with the dual space of kS as a GF2)-vector space.

Theorem 4.14 Let K be a field which has quadratic field extensiogsafd F,. Assume
thatr; and s, are non-Pappian nearfield planes of hyperbolic flock type constructed from
the Pappian planeX; and X, coordinatized by Fand F, respectively.

If the planesr; andw, are isomorphic then the fields; Bnd F, are isomorphic.

Proof: First of all, note that we may consider both Pappian planes as defined on the same
points as the associated spreads are both itBPK). Let p be an isomorphism from

m = U1 U Rf ontorr, = U U R}. The components representedsby= 0 andy = 0 in

the Pappian planes are not necessarily the same but it is clear from previous arguments th
any isomorphism must map the set of these two components of the first plane onto the se
of these same two components of the second plane. Moreover, we may also assume th,
p actually fixesx = 0 andy = 0 with the obvious interpretation. And, we may assume
thatU; maps intoU,. Hence, it also follows thalR} maps toR; so thatR; maps toR,. It
follows by (4.11) that p is an isomorphism from the Pappian coordinatized-pynto the
Pappian plane coordinatized By which implies that the two fields are isomorphic. O

Actually, (4.14) is not stated in its most general form. If we consider a Pappian plasfe
the type considered in the statement of the result, there is a set of Aatir{corresponding
to reguli in PG3, K)) which cover the components except fo= 0 andy = 0. If all of
these nets are derived (replaced by the partial spread net of Baer subplanes) then anoth
Pappian plan&* is obtained which also may be coordinatized by the same field. Recall, in
the arguments above, the components of the plane in question are represented in the for

y = X[ i{k] wherev, k are inK. The components are i exactly whent = + and in
¥* exactly whent = —. A basis change of the form

1 0 0 0

01 0 O

0 0 -1 0O

00 0 -1

then shows that the componentsif may be represented by components of the form

v

_ _ —yk .
x_O,y_x[ K b ]forallu,ka.

Effectively, this amounts to choosing two different points to repreggnt) in a given
Pappian plane once it has been decided what subspaces to becalledndy = 0. Note
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that the two subspaces with equatipr= x do not belong to the same Pappian plane as
components. In the case Bfandx*, the componeny = x of X (X*) is a Baer subplane
of X* ().

In the above proof, if we would not assume that the isomorphic planes are nearfield
planes then by the interchange theorem (extended to the isomorphism case), it would b
possible thap might mapU, onto R} and R} ontoU,. By (4.11), it then follows thaip is
an isomorphism of the Pappian plane used in the constructieparfito the Pappian plane
X “derived” from the Pappian plangg, used in the construction of the plang Hence,
it follows that the fields coordinatizing these two Pappian planes are isomorphic so that the
fields F, andF, are isomorphic.

Thus, we have:

Theorem 4.15 Let F, and F, be quadratic extension fields of the field ket 71 and ,
be non-Pappian Andrplanes of hyperbolic flock type constructed from the Pappian planes
coordinatized by the fields;Fand F, respectively.

If 1 is isomorphic tar, then R is isomorphic to .

There are therefore a vast number of mutually nonisomorphicé\pldries of hyperbolic
flock type and hence a vast number of mutually nonisomorphic hyperbolic flocks of a
hyperbolic quadric in P@, K) for certain fieldsK.

Theorem 4.16

(1) There exist infinitely many finite algebraic extensions of the rationals Q which admit
trivial automorphism groups.

For example let p be prime and n an integer thef x p is irreducible and for n
odd, there is exactly one real root which we denote B¥"pThen Qp'/"] has trivial
automorphism group.

(2) For afield K of part(1), there exists a set of integer primes such that square roots and
guotients of distinct square roots are not in K so there exist infinitely many mutually
nonisomorphic quadratic extensions.

(3) For each of the fields K of partl) and for each quadratic extension of p&®, there
exists a set of nearfield planes whose isomorphism clas44 itorrespondence with
the dual space of K/S as a GF2)-vector space where S is the set of squares of nonzero
elements of K.

Hence there are infinitely many mutually nonisomorphic nearfield planes of hyper-
bolic flock type which are not Pappian planes.

(4) For each such field K of partl), there exists an infinite number of mutually noniso-
morphic nonlinear hyperbolic flocks in R& K) corresponding to nearfield planes.

Proof:

1. Note that the polynomiad” — p has exactly one real root.

2. There exits a sl of square roots of integer primes such that no element or quotient
of two distinct elements are contained in any given fi@dp/"]. Then it follows that
QI pY¥M[./a] and Q[ p¥"[v/K] for distinct primesy, k whose square roots areluh are
not isomorphic.
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The proof of(3) follows immediately from(4.14).

For each fieldK of part(1), there are infinitely many mutually nonisomorphic quadratic
extensions. For each of these quadratic extensions, they ay&| — 1 non-Pappian and
mutually nonisomorphic nearfield planes. Itis easyto verifyjidat/ S| > 1inthe situation
under consideration. For example, foKabasis{e, 1} wheree? = y a nonsquare iK
then(et + u)°*! = u? — yt? is not always a square in any of the fieldsin question. O

We may also consider the more general setting where we construct ap plat€ of
hyperbolic flock type which is not a nearfield plane. For example, such are always possible
when the dimension o ~/Sis larger than 1. The rather technical isomorphism result is
as follows:

Theorem4.17 LetX be aPappian plane and construct plangsi = 1, 2as non-Pappian
André Bol planes as above with spreads in@BK). Letr; = U; U R}, be isomorphic to
mp = Uy U R} by a collineation g.

Then without loss of generalityg may be represented in the following form

,la 0 ,|+a 0
(X’y)_)<x [o 1Yo 1)
where d is an element of the field extension F coordinatiZirand p is an automorphism
of K where X = (x{, x5) where xisin K,i =1, 2.

And representing the field elements in the fdim*] for all u, t in K, if £ = 4 then
a=1landif+ = —theny?~? =a2 anda&*! = 1.

Proof: We know that the unreplaced and replacing nets from one plane are either mappec
to the unreplaced and replacing nets respectively or to the replacing and unreplaced net
respectively.

If the unreplaced net maps to the corresponding unreplaced net then we may use thi
argument as above to show that the isomorphism is a collineation of the PappiarEplane
and the existence of the collineation group allows that the collineation be as above where
in this caset = + anda = 1.

If the unreplaced net maps to the corresponding replaced net then we may represent th
isomorphism in the forntx, y) — (x? A, y?B) for 2 x 2 K matricesA, B. By following
the argument of4.7) and we see that if the unreplaced net maps to the corresponding
replacing net then the Egs. (5) and (6)417) are changed slightly. Note that, in this case,
the + in the matrices is- and we equate the entries in the image matsi® Underg as
(1,1 = —(2,2) and(1, 2) = —y(2, 1) (thatis,— instead of+). The analogous equations
are then:

(see(5) and(7) of (4.7)): 2ubg’ = s’t(ay — a 1(y” — b?)) (10)
and

(see(6) and(8) of (4.7)): 2ytbs® = s"u(ay — a 1(y” — b?)). (11)
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If ay —a~1(y” — b? # 0 then we obtaini? = yt?, a contradiction.
Henceay — a~1(y” — b?) = 0 which forced = 0 so thata? = y*~1. This allows that
we may choosé = [J (}] Sinceg must also map the replacing net into the corresponding
unreplaced net, this shows thgt must be a collineation oE. This condition forces
a1 = 1. Since we note that the mat& = A[}" 7], we have the proof of the result.
a

Corollary 4.18 Assume the conditions ¢4.17) and further assume that the field K has
a trivial automophism group. We shall assume the notation previously established.

Then under an isomorphisiJ;” maps to Y k and R = (R} )* maps to Rk for some
nonzero element k in K Note that U k can be either §J or R;.

Proof: We must now have? = 1in (11) of (4.17) so tha = +1. Recallx’ = x[ 3> J.
Hence the isomorphism either has the fomay) — (x°°, yd) or (x,y) — (x, y°’d)
whereg = 0 or 1. It is easy to check that a compongnt= xm will either map to
y =x°’mdory = x°’m?d. Sincem’ ) = m!+? the result follows. |

Corollary 4.19 Let K be a field with trivial automorphism group. Let S denote the
subgroup of nonzero squares of K. LetS} = {T where T is any subset of Kwhich is
closed under multiplication by elements gf S

The set of isomorphism classes of Angianes of hyperbolic flock type obtained from
a given quadratic extension field F of K is1nl correspondence with the set of orbits of
C(S) under multiplication by elements of K

In particular, if U;, and U, are subgroups such thatJS is an index two subgroup
of K= /S fori = 1, 2then the sets are in distinct orbits. These sets correspond to noniso-
morphic nearfield planes as seen above.

Note that the empty set corresponds to the Pappian pizinebtained from the Pappian
planeX coordinatized by F by the derivation of all of the Aidrets defined by the unique
automorphism of the field which fixes K pointwise. The setifilarly corresponds t&.

Proof: If a setis a group then the image undtes a group only ik~ and hencd is in
the original group. ]

5. The flocks of Burn

As mentioned in the introduction, Burn [7] (p. 356) gives an example of a class of Bol
quasifields which are not nearfields. All of these Bol quasifields produce hyperbolic flocks
and are Ande’quasifields of hyperbolic flock type and thus appear in Sections 3 and 4. We
shall give these examples an interpreted in our notation.
Let K be the fieldQ of rationals. LetF = Q(+/d) for some nonsquare in Q. Let

p be any prime inQ and write any elemerk of Q in the form (—1)f p*pj*p3? - - - pt*
where{p, p1, P2, - .., pt} are distinct primes irQ, 8 = 0 or 1,« is an integer, and; is
a nonzero integer far = 1, 2, ..., t. Note thatQ~ properly contains the subgroupof
nonzero squares @.
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Consider a componet= xm of the corresponding Pappian plane coordinatizedr by
and leto denote the unique involutory automorphism which fikes= Q pointwise.

If k = m**° has the representation as above whgre= 0 mod 2, thery = xmis not
replaced so is ifJ. If, with respect tok, somea; = 1 mod 2 then replacg = xm by
y=xmifand only ifo + o = 1 mod 2

Burn shows that these examples provide Bol quasifields which are not nearfields.

In order to bring these examples into our notation, we first note that if the eldnient
K = Qisasquare then each of the exponents in any representation are congruent to 0 mod
so that none of the corresponding components are replaced. This is equivalent to requirin
thatSis always contained in the unreplacedldet. Now assume thdt has representation
so that some exponeat = 1 mod 2, and further that the sum of the exponents not equal
to the exponent of-1 also is congruent to 1 mod 2. Thké? must have representation so
that the sum of the exponents not equal to the exponenialso is congruent to 1 mod 2.

In other words, once we agree to replace the £miztR, then we also must replace the
André netsR 4. forall g in K = Q.

Since this type of replacement does not produce groupsuch that) ~/Sis a subgroup
of K=/S, it follows that these examples do not produce nearfields.

Hence,

Theorem 5.1 The flocks of a hyperbolic quadric of Burn are non nearfield Bol flocks.

6. The flocks of Riesinger

Recently, Riesinger [16] gave some conditions by which a spread (8,3, K a field,

exists which consists of the union of a set of reguli which share two lines. Furthermore,
Riesinger gives an example whe{ds the field of real numbers which is not Pappian. Here
the emphasis is on topological planes and the example constructed gives a 4-dimension:
translation plane with 6-dimensional group.

By Section 2, there is a corresponding flock of a hyperbolic quadric. In Sections 3 and
4, we have constructed many classes of flocks of hyperbolic quadrics all of which are what
might be called Bol flocks in that the corresponding translation planes are Bol planes. And,
all finite hyperbolic flocks are Bol flocks.

In this section, we show that the flocks of Riesinger are not Bol flocks. In order to do this,
we shall translate the construction of Riesinger into the notation developed in Section 2 anc
then verify that the required involutions do not exist in the translation plane.

We developed the connections between the translation planes and the flocks algebraicall
without the use of the Klein quadric. However, by applying the arguments of Johnson [12]
(Section 4), we may also use a Klein quadric as follows:

We assume that the Klein quadric is given kyxs — XiX4 + Xox3 = 0 within the
projective 5-space PG, K) given by homogeneous coordinates, X1, X2, X3, Xa, X5). If
{e1, &, €3, &4} is a basis for the underlying 4-dimensional vector space Kveave choose
{e1nep, e1nE3, €1 A6y, B2 AE3, €2 A€y, E3A 64} AS a basis for the underlying 6 -dimensional
vector space ovek whereA denotes exterior product so theta e; = —ej A €.

A component of the forny = x[t 2] = M then corresponds to the poifit, ms, my,

m3z My
—my, —Mmy,, AM) whereAM denotes the determinant bf.
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The component = 0 corresponds t¢0, 0, 0, 0, 0, 1).

The flock is obtained from a spread which is a union of reguli sharing two lines in
PG(3, K) as follows. The theorem stated has been proved in Johnson [12] for the finite
case. The infinite case follows in a similar manner with appropriate changes.

Theorem 6.1 (See [12] (2.7)) Letz be a translation plane with spread in R& K), for
K afield. Let the spread consist of a §& | i in A} of reguli R which share two lines.
Embed the spread in RG, K) as a set of decomposable vectopointg in the associated
vector space ¥/ Let Q denote the Klein quadric.

Then the reguli Rcorrespond to a set &spacesy;* in Vg whose polar planes; all lie
in a 4-spaceX such thatr; N7; N Q = ¢ andVy; in A(; N Q) is a hyperbolic quadric
in .

Alsa {mi N Q | i in A} is a flock of a hyperbolic quadric in PG, K).

If the components initially have the form= 0,y = x[} 9,y = x["Y" 9 for all
v,t,u=# 0in K then it turns out by following along the arguments in Section 4 of [12] that
the planes have the equations as follows: We mayxasK , PG(3, K) as(X1, X2, X3, X4),
the hyperbolic quadric ag x4 = XoX3 and the planes as x, = X3, m¢: X3 —tXo+ f (t)xz3—
g(t)xs = 0forallt in K (see Section 2).

In the paper by Riesinger, the Klein quadric is taken using the equaiant+ X X4 +
XoXs = 0 and a basis for the 6-dimensional spacéeas €, €; A €3,€1 A €4, 3 A €4, €4 A
e, & A €3} but, elements are represented right to left as opposed to left to right.

If we write out the matrixy = leé mi] = M in terms of this latter basis 44, 0, my,

my) A (0, 1, mz, my) and represented right to left, we obtain the 6-vectenny, my, AM,
my, Mz, 1).
In Riesinger [16] (Sat23.5) p. 146) (35.11), there is a representation of a spread
consisting of a union of reguli sharing two components. Here the feld the field
of real numbers.
The spread as a set of vectors in 6-dimensional vector space over the reals is:

{(0,0,1,0,0,0),(0,0,0,0,0, 1),

(To(f, @), Ta(f, @), T2(f, @), Ta(f, @), Ta(f, 9), Ts(f, 9)),
for all f, g inthe field of real numbejs

where

To(f.9) = (f3+af?g+ fg?)/ (2 + 1+ o)g?.

Ti(f.9) = (f’g+afg® + g%/ (2 + 1+ o)g?.

To(f,g) = (f*+afg+ 2122 +afg® + gh /(2 + (1+ a)g?),
Ta(f,9) = —f,

Ta(f,9) = —0,

Ts(f, g) = 1, whereq is a real number such thiat | < 0.08.
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In our representation, the first two vectors correspongl#60 andx = 0 respectively.

Now letg = 0O to obtain the vecto¢f, 0, f2, —f, 0, 1). This vector corresponds in our
representation to the compongnt x[’of 7°f] for all f inthe reals.

If gisnotO, let—g = uand—f = ut. If we work out what the form of the vector
becomes, and translate this back to our component representation, we obtain the followin
corresponding component:

u ut
for allt, u #£ 0 in the field of real numbers

y=x [(t(tz +oat+1)/t2+14+a)u —(t2+at+1)/(t2+1+ a))u]

We may now apply Theorer2.1) to obtain the flocks of Riesinger.

Theorem6.2 LetK bethefield of real numbers anddebe a real number of absolute value
less thar0.08. Let PG3, K) be represented by homogeneous coordinatesx,, Xz, Xa).
Let xX4 = XoX3 represent a hyperbolic quadric.

Then the following is a flock Jof the hyperbolic quadric

P X2 = X3,

T Xy —tXo 4+ G2 +at + 1) /(12 + 1+ a))Xs + (12 +at +1)/(t2 + 14 a))Xs = 0,
foralltin K.

Note that whem = 0, we obtain a linear flock and a corresponding Pappian plane.

Theorem 6.3 A Riesinger translation plane,Hor o # 0 does not admit an involutory
collineation interchanging »= 0 and y= 0 with axis y= x (using the notation of6.2)).

Proof: A collineation which fixesy = x pointwise is linear over the fiel&k of real
numbers and if it interchanggs= 0 andx = 0 has the formx, y) — (YA, XxB) where
A, B are 2x 2 matrices with entries iiX. Sincey = x is fixed pointwise A = B.

Assume that a component has the foyra= x["{" 9"]. Then the involution maps this

component ontyy = X[47% %)/s1 where A denotes the determinant of the indicated

matrix.
The plane admits the collineation

1 0 0 0

0 1 0 0

0 0 —-A 0

0 0 0 —A

which maps the latter component onte= X[ %} ]. Hence, it follows that
f(—f()) =—tandg(—f(t)) =g() foralltin K.

In the planes in question, we have

f) =tt®+at+1)/t>+a+1)
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and
gt) = —(t2+at +1)/(t? + a + 1).

Lett =1sothatf (1) = 2+a)/2+«a) =1 Thenf(-1) = -2—-a)/2+a)=-1
if and only if 2« = O if and only ifa = 0. |

Theorem 6.4 The nonlinear flocks of Riesinger are not Bol flocks.

Proof: By Riesinger [16](35.13), the full collineation group of the associated translation
plane leaves the set of componefits= 0 andy = 0} invariant. Hence, if the translation
plane is a Bol plane, it is a Bol plane with respect to the infinite paiditsand(co). And,

by the theorem of Burn, for each component, there is an involutory central collineation
interchanging these two points with axis the given component. Taking the component to
bey = x, the form for the Bol quasifield is as represented in the previous Section 3 and so
there is an involution of the forrx, y) — (y, X). However, we have seen that this cannot
represent a collineation O

7. Infinite flocks of quadric sets

In this article, we have constructed infinite nonlinear flocks of hyperbolic quadrics in
PG(3, K) for K an infinite field. It is also possible to construct infinite nonlinear flocks of
guadratic cones and infinite nonlinear flocks of elliptic quadrics iR &).

For example, the reader might like to consult De Clerck and Van Maldeghem [8], Jha-
Johnson [11], and Biliotti-Johnson [4] for results about and constructions of infinite flocks
of quadratic cones.

By Thas [17] for even order, and Orr [15] for odd order, there can be no nonlinear finite
flocks of elliptic quadrics in PG, q). However, Dembowski [9] gives an example of a
nonlinear flock of an elliptic quadric in ARG, R) whereR is the field of real numbers.
Also, this example is generalized in Biliotti-Johnson [5].
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Note

1. One of the referees has pointed out that it is possible to prove that the flocks of Riesinger are not Bol flocks
without representing these flocks in our form and has provided the author with a proof using properties and
theory of topological planes.
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