ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Finite Free Resolutions and 1-Skeletons of Simplicial Complexes

Naoki Terai1 and Takayuki Hibi2
1Department of Mathematics, Faculty of Education Saga University Saga 840 Japan
2Department of Mathematics, Graduate School of Science Osaka University Toyonaka Osaka 560 Japan

DOI: 10.1023/A:1008648302195

Abstract

A technique of minimal free resolutions of Stanley-Reisner rings enables us to show the following two results: (1) The 1-skeleton of a simplicial ( d-1)-sphere is d-connected, which was first proved by Barnette; (2) The comparability graph of a non-planar distributive lattice of rank d-1 is d-connected.

Pages: 89–93

Keywords: simplicial complex; 1-skeleton; comparability graph; $d$-connected; free resolution

Full Text: PDF

References

1. D. Barnette, “Graph theorems for manifolds,” Israel J. Math. 16 (1973), 63-72.
2. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge/New York/Sydney,
1993. P1: rbaP1: rba Journal of Algebraic Combinatorics KL365-05-Terai October 30, 1996 16:1 FINITE FREE RESOLUTIONS AND 1-SKELETONS 93
3. T. Hibi, “Level rings and algebras with straightening laws,” J. Algebra 117 (1988), 343-362.
4. T. Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw Publications, Glebe, N.S.W., Australia, 1992.
5. T. Hibi, “Face number inequalities for matroid complexes and Cohen-Macaulay types of Stanley-Reisner rings of distributive lattices,” Pacific J. Math. 154 (1992), 253-264.
6. M. Hochster, “Cohen-Macaulay rings, combinatorics, and simplicial complexes,” in Ring Theory II, Lect. Notes in Pure and Appl. Math., No. 26, B.R. McDonald and R. Morris (Eds.), pp. 171-223. Dekker, New York, 1977.
7. R.P. Stanley, “Cohen-Macaulay complexes,” in Higher Combinatorics, M. Aigner (Ed.), pp. 51-62. Reidel, Dordrecht/ Boston, 1977.
8. R.P. Stanley, Combinatorics and Commutative Algebra, Birkh\ddot auser, Boston/Basel/Stuttgart, 1983.
9. R.P. Stanley, Enumerative Combinatorics, Volume I, Wadsworth & Brooks/Cole, Monterey, Calif., 1986.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition