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Abstract. A technique of minimal free resolutions of Stanley–Reisner rings enables us to show the following
two results: (1) The 1-skeleton of a simplicial(d − 1)-sphere isd-connected, which was first proved by Barnette;
(2) The comparability graph of a non-planar distributive lattice of rankd − 1 isd-connected.
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1. Introduction

A simplicial complex1 on the vertex setV = {x1, x2, . . . , xv} is a collection of subsets of
V such that (i){xi } ∈ 1 for every 1≤ i ≤ v and (ii) if σ ∈ 1 andτ ⊂ σ thenτ ∈ 1.
Each elementσ of 1 is called a face of1. Setd = max{](σ ); σ ∈ 1} and define the
dimension of1 to be dim1 = d − 1. Here](σ ) is the cardinality of a finite setσ .

A simplicial complex1 of dimensiond − 1 is called asimplicial (d − 1)-sphereif the
geometric realization of1 is homeomorphic to the(d − 1)-sphere.

The 1-skeleton1(1) of 1 is the subcomplex

1(1) = {σ ∈ 1; ](σ ) ≤ 2}

of 1, which is a 1-dimensional simplicial complex (i.e., graph) on the vertex setV . When a
simplicial complex1 is an order complex of a finite partially ordered setP, the 1-skeleton
of 1 is just the comparability graph Com(P) of P.

Given a subsetW of V , we write1W for the subcomplex

1W = {σ ∈ 1; σ ⊂ W}

of 1. In particular,1V = 1 and1∅ = {∅}.
Let H̃i (1; k) denote thei-th reduced simplicial homology group of1 with the coefficient

field k. Note thatH̃−1(1; k) = 0 if 1 6= {∅} and

H̃i ({∅}; k) =
{

0 if i ≥ 0
k if i = −1.
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We fix an integer 1≤ i < v. A 1-dimensional simplicial complex1 on the vertex setV
is said to bei -connectedif 1V−W is connected (i.e.,̃H0(1V−W; k) = 0) for every subset
W of V with ](W) < i .

The purpose of the present paper is first to give a ring-theoretical proof of a classical
result that the 1-skeleton of a simplicial(d − 1)-sphere isd-connected (cf. Barnette [1]),
and secondly to show that the comparability graph Com(L) of a finite distributive latticeL
of rankd − 1 isd-connected.

2. Algebraic background

We here summarize basic facts on finite free resolutions of Stanley–Reisner rings. See,
e.g., [2, 4, 6, 8] for the detailed information.

Let A = k[x1, x2, . . . , xv] be the polynomial ring inv variables over a fieldk. Here,
we identify each elementxi in the vertex setV with the indeterminatexi of A. We
considerA to be the graded algebraA = ⊕

n≥0 An with the standard grading, i.e., each
degxi = 1. Let Z denote the set of integers. We writeA( j ), j ∈ Z, for the graded mod-
ule A( j ) = ⊕

n∈Z [ A( j )]n over A with [ A( j )]n := An+ j . Given a simplicial complex1
on V , defineI1 to be the ideal ofA generated by all squarefree monomialsxi1xi2 · · · xir ,
1 ≤ i1 < i2 < · · · < i r ≤ v, with {xi1, xi2, . . . , xir } 6∈ 1. We say that the quotient algebra
k[1] := A/I1 is theStanley–Reisner ringof 1 overk.

When k[1] is regarded as a graded modulek[1] = ⊕
n≥0(k[1])n over A with the

quotient grading, it has a graded finite free resolution

0 −→
⊕
j ∈Z

A(− j )βh, j
ϕh−→ · · · ϕ2−→

⊕
j ∈Z

A(− j )β1, j
ϕ1−→ A

ϕ0−→ k[1] −→ 0, (1)

where each
⊕

j ∈Z A(− j )βi, j , 1 ≤ i ≤ h, is a graded free module of rank 06= ∑
j ∈Z βi, j <

∞, and where everyϕi is degree-preserving. Moreover, there exists a unique such resolution
which minimizes eachβi, j ; such a resolution is calledminimal. If a finite free resolution (1)
is minimal, then the non-negative integerh is called thehomological dimensionof k[1] over
A andβi, j = βi, j (k[1]) is called the(i, j )-th Betti numberof k[1] over A. Furthermore,
let βi = βi (k[1]) denote the sum

∑
j ∈Z βi, j .

Our fundamental technique in the present paper is based on the topological formula
[6, Theorem (5.1)] which guarantees that

βi, j (k[1]) =
∑

W⊂V, ](W)= j

dimk H̃ j −i −1(1W; k). (2)

Thus, in particular,

βi (k[1]) =
∑
W⊂V

dimk H̃](W)−i −1(1W; k).

Lemma 2.1 Let 1 be a simplicial complex on the vertex set V with](V) = v and i
an integer with1 ≤ i < v. Then the1-skeleton1(1) of 1 is i -connected if and only if
βv−i,v−i +1(k[1]) = 0.
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Proof: The 1-skeleton1(1) is i -connected if and only if, for every subsetW of V with
](W) = i − 1, we haveH̃0(1

(1)
V−W; k) (= H̃0(1V−W; k)) = 0. Moreover, by virtue of

Eq. (2), H̃0(1V−W; k) = 0 for every subsetW of V with ](W) = i − 1 if and only if
βv−i,v−i +1(k[1]) = 0 as desired. 2

3. Main results

We first give a ring-theoretical proof of the following classical result which was proved by
Barnette [1].

Theorem 3.1 (Barnette [1]) The1-skeleton of a simplicial(d − 1)-sphere with d≥ 2 is
d-connected.

Proof: Suppose that1 is a simplicial(d − 1)-sphere on the vertex setV with ](V) = v.
We know thatk[1] is Gorenstein; that is to say,βi (k[1]) = 0 for every i > v −
d, βv−d, j (k[1]) = 0 if j 6= v and βv−d,v(k[1]) = 1. Thus, in particular, we have
βi,i +1(k[1]) = 0 for everyi ≥ v − d. Hence, by Lemma (2.1), the 1-skeleton1(1) of
1 is d-connected as required. 2

Remark The above ring-theoretical technique enables us to show the 1-skeleton of a
level complex1 (see, e.g., [3, 7]) of dimensiond − 1 with v vertices isd-connected if
]{σ ∈ 1 | ](σ ) = d} 6= v − d − 1. In particular, we can see that the 1-skeleton of a
Gorenstein complex1 (see, e.g., [2, 6, 8]) of dimensiond − 1 isd-connected.

We now turn to the study on comparability graphs of finite distributive lattices. Every
partially ordered set (“poset” for short) is finite. Aposet idealin a posetP is a subset
I ⊂ P such thatα ∈ I , β ∈ P andβ ≤ α together implyβ ∈ I . A clutter is a poset in
which no two elements are comparable. Achainof a posetP is a totally ordered subset of
P. The lengthof a chainC is `(C) := ](C) − 1. Therank of a posetP is defined to be
rank(P) := max{`(C); C is a chain ofP}. Given a posetP, we write1(P) for the set
of all chains ofP. Then1(P) is a simplicial complex on the vertex setP, which is called
theorder complexof P. Thecomparability graphCom(P) of a posetP is the 1-skeleton
1(1)(P) of the order complex1(P). Whenx ≤ y in a posetP, we define the closed
interval [x, y] to be the subposet{z ∈ P; x ≤ z ≤ y} of P.

A lattice is a posetL such that any two elementsα andβ of L have a greatest lower
boundα ∧ β and a least upper boundα ∨ β. Let 0̂ (resp. 1̂) denote the unique minimal
(resp. maximal) element of a latticeL. A lattice L is calleddistributive if the equalities
α∧(β∨γ ) = (α∧β)∨(α∧γ ) andα∨(β∧γ ) = (α∨β)∧(α∨γ ) hold for allα, β, γ ∈ L.
Every closed interval of a distributive lattice is again a distributive lattice. A fundamental
structure theorem for (finite) distributive lattices (see, e.g., [9, p. 106]) guarantees that, for
every finite distributive latticeL, there exists a unique posetP such thatL = J(P), where
J(P) is the poset which consists of all poset ideals ofP, ordered by inclusion. We say that
a distributive latticeL = J(P) is planar if P contains no three-element clutter. Aboolean
lattice is a distributive latticeL = J(P) such thatP is a clutter.
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A chainC : 0̂ = α0 < α1 < · · · < αs−1 < αs = 1̂ of a distributive latticeL is called
essentialif each closed interval [αi , αi +1] is a boolean lattice. In particular, all maximal
chains ofL is essential. Moreover, the chain0̂ < 1̂ of L is essential if and only ifL is
a boolean lattice. An essential chainC : 0̂ = α0 < α1 < · · · < αs−1 < αs = 1̂ is called
fundamentalif, for each 1≤ i < s, the subchainC − {αi } is not essential. The following
Lemma (3.2) is discussed in [5].

Lemma 3.2 ([5]) Let L be a distributive lattice of rank d−1with](L) = v and1 = 1(L)

its order complex. Then the(v − d, v − d + i )-th Betti numberβv−d,v−d+i (k[1]) is equal
to the number of fundamental chains of L of length d− i − 1.

We are now in the position to give the second result of the present paper.

Theorem 3.3 Suppose that a finite distributive lattice L of rank d−1 is non-planar. Then
the comparability graph Com(L) of L is d-connected.

Proof: Let P = {p1, p2, . . . , pd−1} denote a poset withL = J(P) andM : 0̂ = α0 <

α1 < · · · < αd−2 < αd−1 = 1̂ an arbitrary maximal chain ofL. We may assume that
eachαi is the poset ideal{p1, p2, . . . , pi } of P. SinceL is non-planar, there exists a
three-element clutter, say,{pl , pm, pn} with 1 ≤ l < m < n ≤ d − 1. Hence, for some
l ≤ i < m, pi and pi +1 are incomparable inP, and for somem ≤ j < n, pj and
pj +1 are incomparable inP. Let l ≤ i < m (resp. m ≤ j < n) denote the least (resp.
greatest) integeri (resp. j ) with the above property. Thenβ = {p1, . . . , pi −1, pi +1} and
γ = {p1, . . . , pj −1, pj +1} both are poset ideals ofP. Moreover,αi −1 < β < αi +1 in L
with β 6= αi andα j −1 < γ < α j +1 in L with γ 6= α j . Thus the closed intervals [αi −1, αi +1]
and [α j −1, α j +1] both are boolean. Hence, ifi + 1 ≤ j − 1, then the chainM − {αi , α j }
is essential. On the other hand, ifi + 1 > j − 1, i.e., i = m − 1 and j = m, then
pl < pl+1 < · · · < pm−1 and pm+1 < pm+2 < · · · < pn in P; thus{pm−1, pm, pm+1}
is a clutter ofP. Hence the closed interval [αm−2, αm+1] of L is boolean, and the chain
M − {αm−1, αm} is essential. Consequently, there exists no fundamental chain ofL of
lengthd − 2. Thus, by Lemma (3.2),βv−d,v−d+1(k[1(L)]) = 0. Hence, by Lemma (2.1)
again, the comparability graph Com(L) = 1(1)(L) of L is d-connected as desired. 2

Remark Easily seen from the above proof, for a planar distributive latticeL of rankd−1
which is not a chain, the following conditions are equivalent.

(1) The comparability graph Com(L) of L is d-connected.
(2) There exists no elementα ∈ L such that both [̂0, α] and [α, 1̂] are chains.
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