ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Two Variable Pfaffian Identities and Symmetric Functions

Thomas Sundquist

DOI: 10.1023/A:1022417201878

Abstract

We give sign-reversing involution proofs of a pair of two variable Pfaffian identities. Applications to symmetric function theory are given, including identities relating Pfaffians and Schur functions. As a corollary we are able to compute the plethysm p 2 ^\circ  s k n p_2 \circ s_{k^n} .

Pages: 135–148

Keywords: Pfaffian; involution; Schur function; plethysm; root system

Full Text: PDF

References

1. D.M. Bressoud, "Colored tournaments and Weyl's denominator formula," Europ. J. Comb. 8(1987), 245-255.
2. F. Brioschi, "Sur l'analogicentre une classe determinants d'ordre pair; et sur les determinants binaires," Crelle 52(1856), 133-141.
3. I.M. Gessel, "Tournaments and Vandermonde's determinant," J. of Graph Theory 3 (1979), 305-307.
4. I.G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon, 1979.
5. T. Muir, The Theory of Determinants in the Historical Order of Development, MacMillan and Co., London, 1911.
6. R.A. Proctor, Personal Communication, 1991.
7. J.R. Stembridge, "Non-intersecting paths, Pfaffians and plane partitions," Adv. in Math. 83 (1990), 96-131.
8. T.S. Sundquist, Pfaffians, Involutions, and Schur Functions, Ph.D. Thesis, University of Minnesota, 1992.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition