Basic coset geometries
DOI: 10.1007/s10801-012-0350-8
Abstract
In earlier work we gave a characterisation of pregeometries which are `basic' (that is, admit no `non-degenerate' quotients) relative to two different kinds of quotient operation, namely taking imprimitive quotients and normal quotients. Each basic geometry was shown to involve a faithful group action, which is primitive or quasiprimitive, respectively, on the set of elements of each type. For each O'Nan-Scott type of primitive group, we construct a new infinite family of geometries, which are thick and of unbounded rank, and which admit a flag-transitive automorphism group acting faithfully on the set of elements of each type as a primitive group of the given O'Nan-Scott type.
Pages: 561–594
Keywords: incidence geometries; primitive permutation group
Full Text: PDF
References
1996. Lecture Notes in Pure and Appl. Math., vol. 190, pp. 185-190. Dekker, New York (1997) Cameron, P.J.: Permutation Groups. London Mathematical Society Student Texts, vol.
45. Cambridge University Press, Cambridge (1999) CrossRef Cara, P., Devillers, A., Giudici, M., Praeger, C.E.: Quotients of incidence geometries. To appear in Des. Codes Cryptogr. doi:10.1007/s10623-011-9488-y Dehon, M.: Classifying geometries with CAYLEY. J. Symb. Comput. $17(3)$, 259-276 (1994) CrossRef De Saedeleer, J., Leemans, D.: On the rank two geometries of the groups $PSL(2,q)$: Part I. Ars Math. Contemp. $3(2)$, 177-192 (2010) Dixon, J.D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics, vol.
163. Springer, New York (1996) CrossRef Giudici, M., Li, C.H., Pearce, G., Praeger, C.E.: Basic and degenerate pregeometries. To appear in Eur. J. Com. arXiv:1009.0075v1 Giudici, M., Li, C.H., Praeger, C.E.: Analysing finite locally s-arc transitive graphs. Trans. Am. Math. Soc. $356(1)$, 291-317 (2004) CrossRef Goldschmidt, D.M.: Automorphisms of trivalent graphs. Ann. Math. 111, 377-406 (1980) CrossRef Leemans, D.: Residually Weakly Primitive and Locally Two-Transitive Geometries for Sporadic Groups. Acad. Roy. Belgique, Mem. Cl. Sci., Coll. 4, Ser. 3, Tome XI, 173 pp. Springer, Berlin (2008) Leemans, D.: The residually weakly primitive pre-geometries of the Suzuki simple groups. Note Mat. $20(1)$, 1-20 (2000) Praeger, C.E.: The inclusion problem for finite primitive permutation groups. Proc. Lond. Math. Soc. $60(1)$, 68-88 (1990) CrossRef Praeger, C.E.: An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. Lond. Math. Soc. $47(2)$, 227-239 (1993) CrossRef Praeger, C.E.: Finite quasiprimitive graphs. In: Surveys in Combinatorics. London Math. Soc. Lecture Note Ser., vol. 241, pp. 65-85. Cambridge Univ. Press, Cambridge (1997) Ronan, M.A., Stroth, D.: Minimal parabolic geometries for the sporadic groups. Eur. J. Comb. $5(1)$, 59-91 (1984) Smith, D.H.: Primitive and imprimitive graphs. Quart. J. Math. Oxford Ser. (2) 22, 551-557 (1971) CrossRef Tits, J.: Géométries polyédriques et groupes simples. In: Atti 2a Riunione Groupem. Math. Express. Lat. Firenze, pp. 66-88 (1962) Tits, J.: Buildings of Spherical Type and Finite BN-Pairs. Lecture Notes in Mathematics, vol.
386. Springer, Berlin (1974)