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Abstract In earlier work we gave a characterisation of pregeometries which are ‘ba-
sic’ (that is, admit no ‘non-degenerate’ quotients) relative to two different kinds of
quotient operation, namely taking imprimitive quotients and normal quotients. Each
basic geometry was shown to involve a faithful group action, which is primitive or
quasiprimitive, respectively, on the set of elements of each type. For each O’Nan-
Scott type of primitive group, we construct a new infinite family of geometries, which
are thick and of unbounded rank, and which admit a flag-transitive automorphism
group acting faithfully on the set of elements of each type as a primitive group of the
given O’Nan-Scott type.

Keywords Incidence geometries · Primitive permutation group

1 Introduction

The technique of taking quotients has proved useful for studying various classes of
combinatorial objects. For instance, in graph theory it has been successful in charac-
terising distance-transitive graphs [20], s-arc transitive graphs [17] and locally s-arc
transitive graphs [12]. Both [7] and [11] represent a recent effort to develop a frame-
work for studying geometries and pregeometries using this technique. In [11] we
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gave a characterisation of pregeometries which are ‘basic’ (that is, admit no ‘non-
degenerate’ quotients) relative to one of two different kinds of quotient operation,
namely imprimitive quotients and normal quotients. The purpose of this paper is to
demonstrate by construction that basic pregeometries can have arbitrarily large rank.
Furthermore, the examples we construct satisfy a number of restrictive geometric
conditions which are important in the field of incidence geometry; namely, they are
geometries, flag-transitive, thick and connected (in the sense of having connected
rank 2 truncations). See Sect. 2.1 for definitions of the geometrical terminology.

Each basic pregeometry arises from a basic pregeometry involving a group of
automorphisms which is faithful and primitive or quasiprimitive, according to the
kind of quotient, on the set of elements of each type. Such groups are categorised as
having one of several ‘O’Nan-Scott types’ (see Sect. 2.2) and our constructions cover
each O’Nan-Scott type. To set our main results Theorems 1.1 and 1.2 in context we
give a brief précis of our approach to studying incidence geometries and the questions
that have arisen.

1.1 Primitive and quasiprimitive groups and geometry quotients

Geometries which are flag-transitive belong to the class of coset pregeometries (see
Sect. 3.1), and their structure can be defined in terms of intersections of cosets within
a group. Constructing geometries via cosets goes back to the work of Tits [21] and
there is an extensive body of literature on constructing coset geometries from various
almost simple groups (for example [4, 8, 9, 14, 15, 19]). As demonstrated in [7,
Example 6.8], the quotient of a flag-transitive geometry may be neither flag-transitive
nor a geometry (as opposed to a pregeometry), and this ultimately precludes a self-
contained quotient theory of flag-transitive geometries. However, by relaxing these
two conditions we end up with the class of coset pregeometries with connected rank
2 truncations, which is closed under taking both normal and imprimitive quotients,
and which is therefore more amenable to study by this process. We are then faced with
the problem of describing the basic pregeometries, that is, those with no meaningful
quotients.

The two main results of [11] deal with characterising these basic pregeometries, in
the context of imprimitive quotients in [11, Theorem 1.1] and normal quotients in [11,
Theorem 1.2]. An imprimitive quotient is a quotient with respect to a partition of the
set of elements of the geometry that is invariant under a group G of automorphisms.
If the partition is also the set of orbits of some normal subgroup N of G then it is
called a normal quotient. The basic coset pregeometries for a group G relative to these
two kinds of quotient are called G-primitive basic and G-normal-basic, and involve
faithful primitive and quasiprimitive group actions, respectively: a permutation group
is primitive if it leaves no proper, non-trivial partition of the point set invariant, and
is quasiprimitive if every non-trivial normal subgroup is transitive; the latter is a
generalisation of the former. In essence the two theorems in [11] state the following
for G-vertex-transitive pregeometries (here Xi denotes the set of all elements of type
i—see Sect. 2):

(1) The study of G-primitive-basic pregeometries is reduced to studying those pre-
geometries in which G is faithful and primitive on each Xi , [11, Theorem 1.1].
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(2) The study of G-normal-basic pregeometries is reduced to studying those prege-
ometries in which G is faithful on every Xi and quasiprimitive on all but at most
one of the Xi , [11, Theorem 1.2].

Following on from this reduction, we consider in this paper the question of
whether the rank of a flag-transitive pregeometry satisfying these conditions is
bounded. The well-known example of a projective space shows that this is not the
case in general, and furthermore is an example of a geometry which is thick and
flag-transitive, and which can have arbitrarily large rank. Hence even with these re-
strictions the rank is unbounded.

Thus we refine the question according to the different O’Nan-Scott types of primi-
tive or quasiprimitive permutation groups. The different types of primitive groups are
described in [18], in which each type is represented by a 2 letter abbreviation (see
Sect. 2.2 for an explanation of these). Moreover, the third author showed in [17] that
quasiprimitive groups admit a similar characterisation with a direct correspondence
between the different types of quasiprimitive and primitive groups (in the sense that
a primitive group of a given type is a quasiprimitive group of the same type). Thus,
when constructing examples of geometries satisfying the conditions in (1) preserved
by a given O’Nan-Scott type of primitive group, we are also constructing examples
for that type of quasiprimitive group satisfying the conditions in (2). This leads us to
ask the question as follows.

Given a particular O’Nan-Scott type of primitive group, is there an upper
bound for the rank of any thick flag-transitive geometry preserved by a group
of this type?

The main result of this paper is that the answer is ‘no’, and the answer is still ‘no’ in
the particular case of geometries where the actions of G on the Xi are permutationally
isomorphic. Let Γ be a geometry and G a permutation group on a set Ω . We say
that Γ is a GΩ -uniform geometry if Γ is a thick geometry with connected rank 2
truncations, G is flag-transitive on Γ , and for any type in Γ the action of G on the
subset of elements of that type is permutationally isomorphic to the G-action on Ω

(and in particular is faithful).

Theorem 1.1 Let k be a positive integer. Then for each of the eight O’Nan-Scott
types of primitive permutation groups, there exists a primitive group G of that type
on a set Ω and a GΩ -uniform geometry of rank k.

Theorem 1.1 is proved in Sect. 7. We also show that for a given O’Nan-Scott type
there is often a large amount of flexibility in how we can achieve a GΩ -uniform
geometry of rank k. In particular, G has a minimal normal subgroup of the form T n

for some simple group T and integer n, and we can often achieve arbitrarily large
rank by varying either T or n.

Although in this paper we focus on constructing geometries in which the primitive
action is of the same O’Nan-Scott type on each set Xi it is possible for a group
to have faithful primitive actions of more than one O’Nan-Scott type. Indeed there
exist a group G which is flag-transitive on a thick geometry of rank 3 satisfying the
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conditions in (1) such that, for i �= j , GXi and GXj are primitive of different O’Nan-
Scott types. Such geometries are discussed briefly in Sect. 8.

As part of the paper we give several constructions of flag-transitive geometries
that, to our knowledge, are new. For the geometries in Construction 4.3, we deter-
mine the basic diagram in Theorem 4.9; for the geometries in Constructions 5.1
and 6.3 we observe that the automorphism groups are different from the automor-
phism groups of any other family of geometries of unbounded rank known to us (see
Remarks 5.5 and 6.8). A key ingredient of many of these constructions is a generic
construction (see Sect. 3) for coset pregeometries with connected rank 2 truncations
which is analogous to the construction of orbital graphs in graph theory (just as coset
pregeometries are analogous to coset graphs).

Theorem 1.2 Let Γ be a coset pregeometry of rank k with connected rank 2 trunca-
tions, and let i be a type in Γ . Then Γ arises by applying Construction 3.1 recursively
k − 1 times starting with a rank 1 pregeometry whose elements form the set of type i

elements of Γ .

In addition, we identify the conditions under which the generic construction yields
a flag-transitive geometry. This generic construction forms the basis of the construc-
tions in Sects. 4 to 6 which are used to build many of the examples of basic geometries
needed for the proof of Theorem 1.1 in Sect. 7.

2 Preliminaries

2.1 Pregeometries

A pregeometry Γ = (X,∗, t) consists of a set X of elements (often called points) with
an incidence relation ∗ on the points, and a map t from X onto a set I of types. The
incidence relation is symmetric and reflexive, and if x ∗ y we say that x and y are
incident. Furthermore if x ∗y with x �= y then t (x) �= t (y). For each i ∈ I , we use the
notation Xi to mean the set t−1(i) of all elements of type i. It follows that X is the
disjoint union

⋃
i∈I Xi . The number |I | of types is called the rank of the pregeometry,

and we assume throughout the paper that |X|, and hence |I |, is finite. Unless stated
otherwise, the set I for a rank k pregeometry is equal to {1, . . . , k}. A flag F is a
set of pairwise incident elements of Γ (which implies that the elements of F are of
pairwise distinct types). The rank of a flag is the number of elements that it contains.
A chamber is a flag containing one element of each type. A pregeometry in which
every flag is contained in a chamber is called a geometry, and a geometry in which
each non-maximal flag is contained in at least two (respectively, three) chambers is
called firm (respectively, thick).

For a nonempty subset J ⊆ I , the J -truncation of Γ is the pregeometry
(XJ ,∗J , tJ ) where XJ = t−1(J ), ∗J is the restriction of ∗ to XJ , and tJ is the
restriction of t to XJ .

The incidence graph of a pregeometry Γ = (X,∗, t) is the graph with vertex
set X and two elements x, y ∈ X are adjacent if x ∗ y and x �= y. A pregeome-
try Γ is said to be connected if for any two elements x, y ∈ X there is a sequence
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x = x1, x2 . . . , xk−1, xk = y with xi ∗ xi+1, that is, the incidence graph is connected.
We say that Γ has connected rank 2 truncations if for each i, j ∈ I with i �= j , the
{i, j}-truncation is connected.

Let Γ = (X,∗, t) be a pregeometry and let B be a partition of X such that for
each B ∈ B, all elements of B have the same type. The quotient pregeometry of Γ

with respect to B is the pregeometry whose elements are the parts of B and two parts
B1,B2 are incident if there exists x1 ∈ B1 and x2 ∈ B2 such that x1 ∗ x2 in Γ . The
type function is inherited from Γ .

Let Γ = (X,∗, t) be a pregeometry. An automorphism of Γ is a permutation g

of X such that t (x) = t (xg) for all x ∈ X, and xg ∗ yg if and only if x ∗ y, for all
x, y ∈ X. We write AutΓ for the automorphism group of Γ .

Let G ≤ AutΓ . For i ∈ I we write G(Xi) for the kernel of the action of G on Xi ,
and GXi for the group induced by G on Xi (isomorphic to G/G(Xi)). For xi ∈ Xi ,
we write xG

i for the orbit of xi under G.
For a subset J of the type set I , we say that G is J -flag-transitive on Γ if G acts

transitively on the set of all flags F with t (F ) = J . We say that G is vertex-transitive
on Γ if G is J -flag-transitive on Γ for all J with |J | = 1, incidence-transitive on Γ

if G is J -flag-transitive for all J with |J | = 2, and chamber-transitive on Γ if G is
I -flag-transitive. If G is J -flag-transitive for all J ⊆ I we say that G is flag-transitive
on Γ . If Aut(Γ ) is flag-transitive on Γ we often simply say that Γ is flag-transitive.
If Γ is a geometry then G is chamber-transitive on Γ if and only if G is flag-transitive
on Γ .

Let F be a flag of a pregeometry Γ = (X,∗, t). The residue of F in Γ , denoted
ΓF , is the pregeometry (XF ,∗F , tF ) induced by Γ on the set XF of all elements of
X incident with each element of F and whose type is not in t (F ). If Γ is a geometry
then so is the residue ΓF . The rank two residues are Γ are the residues of flags of
rank |I | − 2.

Given a geometry Γ with type set I , the basic diagram of Γ is the graph with
vertex I such that two types i, j are adjacent if and only if there is a rank two residue
ΓF of type {i, j} (that is, a residue of a flag F of type I\{i, j}), for which the graph
induced on XF by the incidence relation is not complete bipartite. Note that if G is
flag-transitive on Γ then all residues of a given type are isomorphic. Sometimes we
decorate the basic diagram by placing labels on each edge to describe the particular
residue.

2.2 Primitive and quasiprimitive permutation groups

Finite primitive permutation groups, and also finite quasiprimitive groups can be di-
vided into a number of distinct classes according to their action and the structure of
their socle; see for example [10, Chap. 4] and [18] (the socle of a group is the sub-
group generated by all its minimal normal subgroups). We follow the class division
given in [18], which we outline in Table 1. Table 1 also gives a defining condition
enabling the O’Nan-Scott type to be identified (additional conditions are sometimes
required for primitivity).
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2.2.1 Primitive groups acting in product action

Although the name ‘Product Action’ is reserved for the PA type of groups described
in Table 1, primitive groups of O’Nan-Scott types HC, CD, and TW, and certain
primitive groups of type HA, can also be viewed as groups acting in product action
(differing from the PA groups in the structure of their socles and point stabilisers).

The product action of a wreath product G = H wrSn = Hn
� Sn is the action on

Ω = Δn (where H acts on Δ) given by

(δ1, . . . , δn)
(h1,...,hn)σ−1 = (

δ
h1σ

1σ , . . . , δ
hnσ

nσ

)

for all (δ1, . . . , δn) ∈ Ω and all (h1, . . . , hn)σ
−1 ∈ G. Such a group is primitive when

the group H , called the component of G, is primitive but not regular on Ω , see [6,
Theorem 4.5]. The O’Nan-Scott types of G corresponding to various O’Nan-Scott
types of H are listed in Table 2.

This observation is important since it enables us to use a single construction (in
Sect. 4) to build geometries of arbitrary rank preserved by primitive groups of types
PA, CD, HC, HA or TW, and this forms part of the proof of Theorem 1.1.

Table 1 The different kinds of primitive and quasiprimitive permutation groups on Ω . Here T is a non-
abelian simple group and α ∈ Ω

Abbreviation O’Nan-Scott type Defining property

HS Holomorph simple Two minimal normal subgroups, each isomorphic to T

HC Holomorph compound Two minimal normal subgroups, each isomorphic to T n

for some n ≥ 2

HA Affine (abelian holomorph) Abelian minimal normal subgroup

AS Almost simple Unique minimal normal subgroup isomorphic to T

SD Simple diagonal Unique minimal normal subgroup isomorphic to T n

which acts non-regularly and (T n)α ∼= T with n ≥ 2

CD Compound diagonal Unique minimal normal subgroup isomorphic to T n,
and (T n)α isomorphic to T � for some � ≥ 2

TW Twisted wreath Unique minimal normal subgroup isomorphic to T n

which acts regularly, for some n ≥ 2

PA Product action Unique minimal normal subgroup isomorphic to T n for
some n ≥ 2, (T n)α �= 1 and (T n)α �∼= T � for any � ≥ 1

Table 2 O’Nan-Scott types of primitive groups G = H wrSn according to the O’Nan-Scott type of the
component H

Type of H AS SD HS HA TW CD HC PA

Type of G PA CD HC HA TW CD HC PA
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3 A generic construction and proof of Theorem 1.2

Here we give a generic construction for pregeometries lying in a certain family C
which contains all the GΩ -uniform geometries (as defined in the introduction). First
we define C .

3.1 The class C of pregeometries

Given a group G with a set of subgroups {Gi}i∈I , the coset pregeometry is the pre-
geometry whose elements of type i ∈ I are the right cosets of Gi in G, such that two
cosets Gix and Gjy are incident if and only if Gix ∩ Gjy is nonempty. The coset
pregeometry is denoted by Γ (G, {Gi}i∈I ).

Let C be the set of pregeometries Γ = (X,∗, t) which are isomorphic to coset pre-
geometries with connected rank 2 truncations. Then C is the set of all pregeometries
such that all of the following hold [7, Theorem 6.7].

(i) AutΓ is vertex-transitive and incidence-transitive on Γ .
(ii) Γ contains a chamber.

(iii) The rank 2 truncations of Γ are connected.

It is clear from the definition that the class C contains all GΩ -uniform geometries. As
explained in the introduction, we are interested in the set C because it is closed under
taking normal and imprimitive quotients. That is, given Γ ∈ C and a G-invariant
partition P of Γ such that for each P ∈ P all elements of P are of the same type, the
quotient Γ/P also lies in C [7, Theorem 1.5].

3.2 The construction

Essentially, we show how to add a new type and corresponding set of elements to
an existing pregeometry in C to create a new pregeometry whose rank is therefore
one greater than the old one. It is a generic construction because (as we show in
Theorem 3.3) any pregeometry in C can be built up starting from one set X1 and then
successively adding sets Xi using the construction.

Construction 3.1 We list the input and output for the construction.

Input: Γ ′ = (X′,∗′, t ′) ∈ C of rank k′ with set of types I ′;
G ≤ AutΓ ′
K ′ = {xi | i ∈ I ′}, a chamber in Γ ′ with t ′(xi) = i for each i ∈ I ′;
a set Y on which G acts transitively, an element y ∈ Y , and a symbol j /∈ I ′.

Output: Inc(Γ ′,G,K ′, Y, y, j) with properties given in Lemma 3.2

Here Inc(Γ ′,G,K ′, Y, y, j) is the incidence structure (X,∗, t) with point set X =
X′ ∪ Y , set of types I ′ ∪ {j}, type function t : x �−→ t ′(x) if x ∈ X′, and t : x �−→ j

if x ∈ Y , and reflexive, symmetric incidence relation ∗ defined as follows. For each
xi ∈ K ′ we define incidence between points in Y and in (X′)i such that the points
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in Y incident to xi are those in the orbit of y under Gxi
, and the other incident pairs

(between Y and (X′)i ) are the images under G of those incident pairs containing xi .
That is to say, we define ∗ on X′ × Y by

x
g
i ∗ wg for all w ∈ yGxi , g ∈ G and xi ∈ K ′.

Otherwise, for u, v both in X′, we set u ∗ v if and only if u ∗′ v.

Lemma 3.2 Let Γ ′, G, K ′, Y , y, k′ and j be as in Construction 3.1, and let Γ =
Inc(Γ ′,G,K ′, Y, y, j) = (X,∗, t). Then the following all hold.

(a) Γ is a pregeometry of rank k′ + 1, K ′ ∪ {y} is a chamber of Γ , G ≤ AutΓ , and
G is vertex-transitive and incidence-transitive on Γ .

(b) The rank 2 truncations of Γ are connected (that is to say, Γ is in C ) if and only
if, for all xi ∈ K ′, 〈Gxi

,Gy〉 = G.

Proof It follows from the definition of Γ that Γ is a pregeometry of rank k′ +1. Also
the elements of K ′ ∪ {y} all have distinct types under t , and y ∗ y′ for each y′ ∈ K ′,
so K ′ ∪ {y} is a chamber of Γ . That G ≤ AutΓ follows from the definition of ∗, and
G is transitive on each Xi and acts incidence-transitively on Γ . Let i be a type not
equal to j . The incidence graph of the {i, j}-truncation has edge set equal to {xi, y}G,
where xi is the type i point in K ′; hence it is connected if and only if 〈Gxi

,Gy〉 = G.
(This is well known, for example, it is the second part of [22, Proposition 1.4.1] while
Goldschmidt [13] attributes it to Sims in the 1960s.) �

Next we show that pregeometries satisfying properties (i) and (ii) of the definition
of C in Sect. 3.1 can be ‘decomposed’ via Construction 3.1. In the proof we use the
notation Γx , for x ∈ X, to denote the set {y ∈ X |x ∗ y, y �= x}.

Theorem 3.3 Let Γ = (X,∗, t) be a rank k pregeometry with type set I , and G ≤
AutΓ such that

(a) G is vertex-transitive and incidence-transitive on Γ , and
(b) Γ contains a chamber K .

Let j ∈ I , let y be the unique point of K in Xj , and let K ′ = K\{y}. Let Γ ′ be the
(I\{j})-truncation of Γ . Then Γ = Inc(Γ ′,G,K ′,Xj , y, j) as defined in Construc-
tion 3.1.

Proof We have to prove only that the incidence in Γ is the same as that specified
in Construction 3.1. Let x ∈ K ′. Since K is a chamber we know that y ∗ x. Also
since G is incidence-transitive on Γ , Γx ∩ Xj = yGx . The group G is transitive on
each Xi and so for any x′ ∈ X such that t (x′) = t (x), there is g ∈ G with xg = x′.
Since G preserves incidence it follows that Γx′ = Γ

g
x ; that is, x′ ∗ (y′)g for all g ∈ G

and y′ ∈ yGx . Since each x′ ∈ X\Xj arises for some x ∈ K ′, it follows that Γ =
Inc(Γ ′,G,K ′,Xj , y, j) as defined in Construction 3.1. �

Theorem 1.2 now follows as a corollary to Theorem 3.3.
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Next we give necessary and sufficient conditions under which Γ = Inc(Γ ′,G,K ′,
Y, y, j) is a geometry and G is flag-transitive on Γ . Part (b) is a reinterpretation of
the condition for a coset pregeometry to be a geometry (see [8] or [3, p. 79]) to our
recursive construction.

Lemma 3.4 Suppose that G is chamber-transitive on the pregeometry Γ ′ in C with
chamber K ′, and suppose that G acts transitively on a set Y . Let y ∈ Y , let j be
a symbol not in the set of types for Γ ′, and let Γ = Inc(Γ ′,G,K ′, Y, y, j) as in
Construction 3.1. Then

(a) G is chamber-transitive on Γ if and only if G(K ′) is transitive on
⋂

x∈K ′ yGx =⋂
x∈K ′ Γx .

(b) Γ is a geometry and G is flag-transitive on Γ if and only if Γ ′ is a geometry
and for every flag Q of Γ ′ contained in K ′, G(Q) is transitive on

⋂
x∈Q yGx =⋂

x∈Q(Γx ∩ Y).

Proof First we prove part (a). Assume that G is chamber-transitive on Γ . The set
of chambers of Γ containing K ′ consists of all sets of the form K ′ ∪ {y′} for y′ ∈⋂

x∈K ′ yGx ⊆ Y . Hence G(K ′) is transitive on
⋂

x∈K ′ yGx = ⋂
x∈K ′ Γx .

On the other hand, assume that G(K ′) is transitive on
⋂

x∈K ′ Γx , let L be a cham-
ber of Γ , and let K be the chamber K ′ ∪ {y} given by Construction 3.1. Now L

contains a chamber L′ of Γ ′ and by assumption there exists g ∈ G with (L′)g = K ′.
By Lemma 3.2, G ≤ AutΓ , so the image of L under g is also a chamber of Γ , and
the unique point y′ in Lg ∩Y is contained in

⋂
x∈K ′ Γx . Hence there exists h ∈ G(K ′)

mapping y′ to y, and so Lgh = K . It follows that G is chamber-transitive on Γ .
We now prove part (b). Assume that Γ is a geometry and that G is flag-transitive

on Γ . Let F be a non-maximal flag of Γ ′. Then F is contained in a chamber L of Γ ,
and there exists a chamber L′ of Γ ′ such that F ⊆ L′ ⊂ L. Hence Γ ′ is a geometry.
Any subset Q of K ′ is a flag of Γ and since G is flag-transitive on Γ , G(Q) is
transitive on the set of (t (Q) ∪ {j})-flags of Γ containing Q. This implies that G(Q)

is transitive on
⋂

x∈Q(Γx ∩ Y) = ⋂
x∈Q yGx .

Conversely, assume that the latter condition in the statement holds. Since this holds
with Q = K ′, part (a) implies that G is chamber-transitive on Γ . To prove that Γ is
a geometry (and hence also that G is flag-transitive on Γ ) let F be a non-maximal
flag of Γ . If F is contained entirely in Γ ′, then F is contained in a chamber L′ of Γ ′
since Γ ′ is a geometry, and since G is chamber-transitive on Γ ′ there exists g ∈ G

such that (L′)g = K ′. Hence (K ′ ∪ {y})g−1
is a chamber of Γ containing F . On the

other hand, if F is not contained in Γ ′, then F = F ′ ∪ {y′} for some flag F ′ of Γ ′
and point y′ in Y . Now F ′ is contained in a chamber L′ of Γ ′ and hence there exists
h ∈ G with (L′)h = K ′. So Fh = F ′′ ∪ {(y′)h} where F ′′ := (F ′)h is a flag of Γ ′
contained in K ′. By assumption there is an element s ∈ G(F ′′) mapping (y′)h to y.

Hence (K ′ ∪ {y})s−1h−1
is a chamber of Γ containing F , and it follows that Γ is a

geometry and G is flag-transitive on Γ . �

We now give a demonstration of how Construction 3.1 can be used to construct
a GΩ -uniform geometry starting with a group G acting on a set Ω and a subset Σ
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of Ω . We first construct a geometry (X1,∗, t) that has only one type, and that has
X1 = Ω admitting the given G-action so that K1 = {x1} is a chamber, where x1 ∈ Σ .
For each of the remaining points xi ∈ Σ , we apply an iteration of Construction 3.1,
adding a new type i, a new set Xi (a copy of Ω) and a new point xi ∈ Xi to the
previous chamber. We then prove that the result is a GΩ -uniform geometry (this is
dependent on having chosen Σ appropriately).

Construction 3.5 Let m be an integer, and let G = Sm acting on Ω = {1,2, . . . ,m}.
For i = 1 to m let xi = i ∈ Ω , and let Σ = {xi |1 ≤ i ≤ m − 2}. Let X1 = Ω , let
Γ1 = (X1,∗, t), where ∗ consists of the pairs (x, x) for x ∈ X1, and t (x) = 1 for all
x ∈ X1. Let K1 = {x1}. For b with 1 < b ≤ m−2, suppose we have constructed Γb−1

and chamber Kb−1 = {x1, . . . , xb−1}. Let Γb = Inc(Γb−1,G,Kb−1,Ω,xb, b) as in
Construction 3.1, and Kb = Kb−1 ∪ {xb}.

Lemma 3.6 For 1 ≤ b ≤ m−2, let Γb be the pregeometry given by Construction 3.5.
Then

(a) Γb is a geometry of rank b and G is flag-transitive on Γb ,
(b) Γb is thick if b > 1, and
(c) if b > 1 then the rank 2 truncations of Γb are connected (and hence Γb is a

GΩ -uniform geometry).

Proof Part (a): The proof is by induction on b. As chambers are singletons for Γ1,
the statement is trivially true for Γ1. Suppose inductively that 1 < b ≤ m− 2 and that
Γb−1 is a geometry with G flag-transitive on Γb−1. We check that the condition in
Lemma 3.4(b) holds for Γb = Inc(Γb−1,G,Kb−1,Ω,xb, b). Let Q be a non-empty

subset of Kb−1. We need to show that
⋂

xs∈Q Gxs is transitive on
⋂

xs∈Q x
Gxs

b .

Let xs ∈ Q. Since G = Sm, Gxs is transitive on Ω\{xs}. Hence
⋂

xs∈Q x
Gxs

b =⋂
xs∈Q Ω\{xs} = Ω\Q. Now

⋂
xs∈Q Gxs = G(Q) = Sym(Ω\Q) which is transitive

on Ω\Q. Hence the condition in Lemma 3.4(b) holds and so Γb is a geometry and G

is flag-transitive on Γb .
Part (b): Consider the chamber Kb = {x1, . . . , xb} with b ≥ 2, and let K ′ be any

co-rank 1 flag contained in Kb , with xi the unique point in Kb\K ′. Then (as shown
in the previous paragraph) G(K ′) = Sym(Ω\K ′), and since b ≤ m − 2, |Ω\K ′| ≥ 3.
Since G(K ′) is transitive on Ω\K ′, K ′ is contained in |Ω\K ′| ≥ 3 chambers, and Γb

is a thick geometry.
Part (c): Since G is primitive, 〈Gxi

,Gxj
〉 = G for distinct xi, xj ∈ Σ . Hence by

Lemma 3.2(b), the rank 2 truncations are connected �

Remark 3.7 We note that the geometry Γb , in Construction 3.5 is the well known
geometry (see for example [5]) constructed as follows: Γb = (X,∗, t) with type set

I = {1, . . . , b}, and X =
.⋃

i∈I Xi where each Xi is a copy of Ω . For each i ∈ I there
is a bijection fi : Xi �−→ Ω , and incidence is defined as follows: for x, y ∈ X, x ∗ y

if and only if either x = y, or t (x) �= t (y) and ft(x)(x) �= ft(y)(y).
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4 Two product action constructions

In this section we give two constructions which produce geometries where the action
of G on each set of elements of a given type is a product action. The first starts with a
flag-transitive geometry of rank k and set of elements X = X1

.∪X2
.∪· · · .∪Xk and for

each positive integer n constructs a new flag-transitive geometry of rank k with set
of elements Xn

1

.∪Xn
2

.∪· · · .∪Xn
k . The second starts with a primitive group G acting

with a product action on Ω = Δn and for all k ≤ �n/2� − 1 produces a GΩ -uniform
geometry of rank k.

4.1 Forming the product of a geometry

Given a geometry with set of elements X = X1
.∪X2

.∪· · · .∪Xk and a positive integer
n we construct a new geometry with set of elements Xn

1

.∪Xn
2

.∪· · · .∪Xn
k ∪̇.

Construction 4.1 Let Γ = (X,∗, t) be a rank k geometry and for each i ∈ I let
Xi = t−1(i). For a positive integer n, let Γ n = (X′,∗′, t ′) be the rank k pregeometry
whose set of elements is X′ = Xn

1

.∪· · · .∪Xn
k equipped with the map t ′ : X′ → I

such that t ′(x) = i for each x ∈ Xn
i . Moreover, (xi1, . . . , xin) ∗′ (yj1, . . . , yjn) with

xi� ∈ Xi and yj� ∈ Xj , if and only if xi� ∗ yj� for each � = 1, . . . , n.

Lemma 4.2 Let Γ be a geometry, n a positive integer, and let Γ n be the pregeometry
yielded by Construction 4.1. Then

(1) Γ n is a geometry.
(2) If Γ is firm (respectively, thick) then Γ n is firm (respectively, thick).
(3) If each rank 2 truncation of Γ is connected then each rank 2 truncation of Γ n is

connected.
(4) If G is flag-transitive on Γ then GwrSn is flag-transitive on Γ n.
(5) If Σ is the residue of a flag F of type J in Γ then Σn is a residue of a flag of

type J in Γ n. Moreover, Γ n has the same basic diagram as Γ .

Proof Let J ⊆ I and F = {(xi1, . . . , xin) | i ∈ J } be a flag in Γ n of type J . Then
for each �, {xi� | i ∈ J } is a flag in Γ and so extends to a chamber {xi� | i ∈ I }. Thus
{(xi1, . . . , xin) | i ∈ I } is a chamber of Γ n and so Γ n is a geometry. Moreover, if each
flag of Γ is contained in at least r chambers then each flag of Γ n is contained in at
least rn chambers. Hence (2) follows.

Let (xi1, . . . , xin), (yj1, . . . , yjn) ∈ Γ n of type i and j , respectively, with i �= j .
If each rank two truncation of Γ is connected, then we can find a path in the {i, j}-
truncation of Γ between xi� and yj� for each �. Moreover, each such path has odd
length, so if we have a path of length r� from xi� to yj� we can also find one of
length r� + 2p for all positive integers p. This allows us to construct a path of length
max{r� : � ∈ {1, . . . , n}} in Γ n from (xi1, . . . , xin) to (yj1, . . . , yjn). Thus all rank
two truncations of Γ n are connected.

Suppose now that G is flag-transitive on Γ and let F1 = {(yi1, . . . , yin) | i ∈ J }
be another flag of Γ n of type J . Then for each � ∈ {1, . . . , n} there exists g� ∈ G
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such that {xi� | i ∈ J }g� = {yi� | i ∈ J }. Hence (F )(g1,...,gn) = F1 and so both Gn and
GwrSn are flag-transitive on Γ n.

Let F = {yi | i ∈ J } be a flag of type J in Γ . Then F ′ = {(yi, . . . , yi) | i ∈ J } is a
flag of type J in Γ n. Moreover, for r /∈ J the element (xr1, . . . , xrn) is in the residue
of F ′ if and only if each for each k ≤ n, xrk is in the residue of the flag {yik}i∈J

of Γ . In particular, if Σ is the residue of F then the residue of F ′ is Σn. Moreover, if
F ′′ = {(yi1, . . . , yin) | i ∈ J } is a flag in Γ n then, for r /∈ J , the element (xr1, . . . , xrn)

is in the residue of F ′′ if and only if, for each k ≤ n, xrk is in the residue of the flag
{yik}i∈J of Γ . It follows that the residue of F ′′ is complete bipartite if and only if the
residue of {yi�}i∈J is complete bipartite for each �, and so the basic diagram for Γ n

is the same as that for Γ . �

4.2 A second product construction

Construction 4.3 below shows how to build a GΩ -uniform geometry of rank at most
�n/2� − 1 where each set of elements of a given type is a copy of Ω = Δn and
G = H wrSn with H primitive on Δ. As mentioned in Sect. 2.2.1, there exist primi-
tive groups of types PA, HC, CD, HA and TW which can be viewed in this manner.
Construction 4.3 is sufficiently generic that it enables us to build geometries of un-
bounded rank for certain examples of primitive groups of each of these O’Nan-Scott
types.

Construction 4.3 Let n be a positive integer, let H be a primitive subgroup of Sm

acting on a set Δ, and let G = H wrSn, acting on Ω := Δn in its product action (see
Sect. 2.2). Let α and β be distinct elements of Δ, and for 1 ≤ c ≤ �n/2� − 1, let

xc := (α, . . . , α
︸ ︷︷ ︸

2c

, β, . . . , β
︸ ︷︷ ︸

n−2c

).

Let Σ = {xc |1 ≤ c ≤ �n/2� − 1}. Let X1 = Ω , let Γ1 = (X1,∗, t), where ∗ consists
of the pairs (x, x) for x ∈ X1, and t (x) = 1 for all x ∈ X1, and let K1 = {x1}. For
b with 1 < b ≤ �n/2� − 1, suppose we have constructed Γb−1 and chamber Kb−1 =
{x1, . . . , xb−1}. Let Γb = Inc(Γb−1,G,Kb−1,Ω,xb, b) as in Construction 3.1, and
Kb = Kb−1 ∪ {xb}.

Lemmas 4.4, 4.5 and Corollary 4.6 are technical results needed for the proof of
Lemma 4.7, which states that Construction 4.3 yields a GΩ -uniform geometry of
rank b. Given x ∈ Ω = Δn, γ ∈ Δ, and 1 ≤ i < j ≤ n, we write non-γ[i,j ](x) to
mean the number of entries of x in coordinates i to j not equal to γ .

Lemma 4.4 Let Λi and Λj be subsets of Ω = Δn with i < j ≤ n, and let α,β ∈ Ω .
Let a > j , and assume that for � ∈ {i, j}, Λ� consists of the n-tuples x such that

non-α[1,�](x) + non-β[�+1,n](x) = a − �.

If x ∈ Λi ∩ Λj then entries i + 1 to j of x are all equal to α.
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Proof We have x ∈ Λi ∩ Λj if and only if, taking � equal to either i or j ,
non-α[1,�](x) + non-β[�+1,n](x) = a − �. So we have

(a) non-α[1,i](x) = a − i − non-β[i+1,n](x), and
(b) non-α[1,j ](x) = a − j − non-β[j+1,n](x).

Furthermore, since i < j

(c) non-β[i+1,n](x) = non-β[i+1,j ](x) + non-β[j+1,n](x), and
(d) non-α[1,i](x) = non-α[1,j ](x) − non-α[i+1,j ](x).

Substituting (a) into (d) gives

a − i − non-β[i+1,n](x) = non-α[1,j ](x) − non-α[i+1,j ](x),

and then using (c), we get

a − i − non-β[i+1,j ](x) − non-β[j+1,n](x)

= non-α[1,j ](x) − non-α[i+1,j ](x).

Now, using (b) to replace the non-α[1,j ](x) term gives

a − i − non-β[i+1,j ](x) − non-β[j+1,n](x)

= a − j − non-β[j+1,n](x) − non-α[i+1,j ](x).

After cancelling terms and rearranging we are left with

non-β[i+1,j ](x) − non-α[i+1,j ](x) = j − i.

Since non-β[i+1,j ](x) ≤ j − i it follows that non-β[i+1,j ](x) = j − i and
non-α[i+1,j ](x) = 0. Hence entries i + 1 to j of x are all α. �

Let G0 := Hβ wrSn (the stabiliser in G of the element (β, . . . , β) ∈ Ω). Let h ∈ H

such that βh = α. Then for each xs ∈ Σ we have xs = (β, . . . , β)hs where

hs = (h, . . . , h
︸ ︷︷ ︸

2s

,1H , . . . ,1H︸ ︷︷ ︸
n−2s

) ∈ Hn < G (1)

and moreover, Gxs = h−1
s G0hs .

Lemma 4.5 Let xs , xa ∈ Σ with s < a. Then x
Gxs
a consists only of vectors y such

that non-α[1,2s](y) + non-β[2s+1,n](y) = 2a − 2s.

Proof Let y ∈ x
Gxs
a , and let hs be as in (1) where βh = α. Then y = x

h−1
s ghs

a for some
g = (t1, . . . , tn)σ ∈ Hβ wrSn = G0. We have

y = (
β, . . . , β
︸ ︷︷ ︸

2s

, αt2s+1 , . . . , αt2a

︸ ︷︷ ︸
2a−2s

, β, . . . , β
︸ ︷︷ ︸

n−2a

)σhs .
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Since for all i, αti �= β , and since σ only permutes entries, the n-tuple

v := (
β, . . . , β
︸ ︷︷ ︸

2s

, αt2s+1, . . . , αt2a

︸ ︷︷ ︸
2a−2s

, β, . . . , β
︸ ︷︷ ︸

n−2a

)σ

has exactly 2a − 2s entries not equal to β . Let d = non-β[1,2s](v). Then d ≤ 2a − 2s,
and exactly 2a − 2s − d entries from 2s + 1 to n are non-β; so non-β[2s+1,n](v) =
2a − 2s − d . When we apply hs to v (to obtain y), the entries of v from 1 to 2s equal
to β become α, and each of the remaining d entries becomes αtihs , for some i, and
as αti �= β , we have αtihs �= α. Hence non-α[1,2s](y) = d . The entries 2s + 1 to n

of v are unchanged by hs , so non-β[2s+1,n](y) = non-β[2s+1,n](v) = 2a − 2s − d . It
follows that non-α[1,2s](y) + non-β[2s+1,n](y) = 2a − 2s. �

Corollary 4.6 Let xi, xj , xa ∈ Σ with 2 ≤ i < j < a ≤ n/2 − 1, and let y ∈
x

Gxi
a ∩ x

Gxj
a . Then entries 2i + 1 to 2j of y are all α.

Proof By Lemma 4.5, the condition of Lemma 4.4 holds for the pair (2i,2j). Hence
by Lemma 4.4, the entries 2i + 1 to 2j of y are all equal to α. �

Lemma 4.7 For 1 ≤ b ≤ �n/2� − 1, let Γb be the pregeometry given by Construc-
tion 4.3. Then

(a) Γb is a geometry of rank b and G is flag-transitive on Γb ,
(b) Γb is thick if b > 1, and
(c) for b > 1 the rank 2 truncations of Γb are connected (and hence Γb is a GΩ -

uniform geometry).

Proof Part (a): The proof is by induction on b. Since for Γ1, ∗ is the set of pairs
(x, x) for x ∈ X1, the statement is trivially true for Γ1. Suppose that 1 < b ≤
�n/2� − 1 and that Γb−1 is a geometry with G flag-transitive on Γb−1. We check that
the condition in Lemma 3.4(b) holds for Γb = Inc(Γb−1,G,Kb−1,Ω,xb, b). Recall
that Kb−1 = {x1, . . . , xb−1}. Let Q be a non-empty subset of Kb−1. We need to show

that
⋂

xs∈Q Gxs is transitive on
⋂

xs∈Q x
Gxs

b .
Let i be the smallest subscript in Q and j the largest. If i = j then Gxi

=
⋂

xs∈Q Gxs is transitive on x
Gxi

b = ⋂
xs∈Q x

Gxs

b . So we may assume that i < j . It
follows from Corollary 4.6 that

all elements of
⋂

xs∈Q

x
Gxs

b have entries 2i + 1 to 2j equal to α. (2)

To show that
⋂

xs∈Q Gxs is transitive on
⋂

xs∈Q x
Gxs

b , let u and u′ be two n-tuples

in
⋂

xs∈Q x
Gxs

b . We find an element of
⋂

xs∈Q Gxs mapping u to u′. As before, let
G0 be the stabiliser in G of (β, . . . , β), and let h ∈ H such that βh = α. Then G0 =
Hβ wrSm, and for each s, Gxs = h−1

s G0hs , with hs as in (1).
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Thus for each xs ∈ Q, each n-tuple in x
Gxs

b can be expressed as x
h−1

s ghs

b for some

g ∈ G0. Hence there exist g,g′ ∈ G0 such that u = x
h−1

j ghj

b and u′ = x
h−1

j g′hj

b , with j

as above.
From the definitions of xb , hj and g we observe that

x
h−1

j g

b = (β, . . . , β
︸ ︷︷ ︸

2j

, α, . . . , α
︸ ︷︷ ︸

2b−2j

, β, . . . , β
︸ ︷︷ ︸

n−2b

)g

so x
h−1

j g

b has exactly 2b − 2j non-β entries, and these entries are all in αHβ ; the same

holds for x
h−1

j g′
b . Furthermore, since by (2) the entries 2i + 1 to 2j of u and u′ are

all α, and since βh = α, the entries 2i + 1 to 2j of x
h−1

j g

b and x
h−1

j g′
b are all equal

to β . Thus there exists an element z of G0 = Hβ wrSn which maps x
h−1

j g

b to x
h−1

j g′
b

and which has the form

z = (z1, . . . , z2i ,1H , . . . ,1H︸ ︷︷ ︸
2j−2i

, z2j+1, . . . , zn)σ

where �σ = � for 2i +1 ≤ � ≤ 2j . We then have x
h−1

j ghj h−1
j zhj

b = x
h−1

j g′hj

b ; that is, the
element h−1

j zhj of Gxj
maps u to u′. Now, let xs ∈ Q. Then i ≤ s ≤ j and we have

x
h−1

j zhj

s = (α, . . . , α
︸ ︷︷ ︸

2s

, β, . . . , β
︸ ︷︷ ︸

n−2s

)
h−1

j zhj

= (
β, . . . , β
︸ ︷︷ ︸

2s

, βh−1
, . . . , βh−1

︸ ︷︷ ︸
2j−2s

, β, . . . , β
︸ ︷︷ ︸

n−2s

)zhj .

Now z fixes and acts trivially on each of the coordinates 2i + 1 to 2j , and since i ≤ s

and z ∈ Hβ wrSn we obtain

x
h−1

j zhj

s = (
β, . . . , β
︸ ︷︷ ︸

2s

, βh−1
, . . . , βh−1

︸ ︷︷ ︸
2j−2s

, β, . . . , β
︸ ︷︷ ︸

n−2s

)hj

= (α, . . . , α
︸ ︷︷ ︸

2s

, β, . . . , β
︸ ︷︷ ︸

n−2s

) = xs.

Hence h−1
j zhj ∈ Gxs for all xs ∈ Q. Thus we have shown that

⋂
xs∈Q Gxs is transitive

on
⋂

xs∈Q x
Gxs

b , and so by Lemma 3.4, Γb is a geometry with G flag-transitive on Γb .
By induction, the result holds for each b ≤ �n/2� − 1.

Part (b): Let i be a type in Γb , so 1 ≤ i ≤ b. Let Kb = {x1, . . . , xb} be the chamber
of Γb given by Construction 4.3, and write K ′ = Kb\{xi}. Then all elements of K ′
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are such that entries 2i − 1 to 2i + 2 are either all α or all β . Hence G(K ′) contains
the subgroup Sym({2i − 1, . . . ,2i + 2}) ≤ Sn acting on the coordinates. The orbit of

xi = (α, . . . , α, α,α,β,β,
︸ ︷︷ ︸

entries 2i−1 to 2i+2

β, . . . , β)

under the subgroup Sym({2i − 1, . . . ,2i + 2}) contains six distinct n-tuples. Hence

|xG(K ′)
i | ≥ 6, and so the co-rank 1 flag K ′ is contained in at least 6 chambers. Since

G is flag-transitive on Γb , it follows that Γb is thick.
Part (c): Let i, j be distinct types. As G is primitive, we have 〈Gxi

,Gxj
〉 = G, and

it follows from Lemma 3.2(b) that the {i, j}-truncation is connected. �

We now work towards determining the diagram for the geometries arising from
Construction 4.3.

Lemma 4.8 Let Γb be the geometry yielded by Construction 4.3 with 2 ≤ b ≤
�n/2� − 1, and let Kb be the chamber {x1, . . . , xb}. Let F ⊂ Kb be a flag of rank at
least 2, and let r1 = min{i | xi ∈ F } and r2 = max{i | xi ∈ F }. Then (g1, . . . , gn)σ ∈
GF if and only if the following conditions all hold:

(i) αgk = α and βgk = β for all k such that 2r1 + 1 ≤ k ≤ 2r2;
(ii) σ fixes {2r1 + 1, . . . ,2i} for each xi ∈ F ;

(iii) for all k ≤ 2r1, αgk ∈ {α,β} and if αgk = β then kσ ≥ 2r2 + 1 while if αgk = α

then kσ ≤ 2r1;
(iv) for all k ≥ 2r2 + 1, βgk ∈ {α,β} and if βgk = α then kσ ≤ 2r1 while if βgk = β

then kσ ≥ 2r2 + 1.

Moreover, GF induces Sym({1,2, . . . ,2r1,2r2 +1,2r2 +2, . . . , n}) on {1,2, . . . ,2r1,

2r2 + 1,2r2 + 2, . . . , n}.

Proof Note that (g1, . . . , gn)σ fixes xi if and only if the following two conditions
both hold:

(a) for all k ≤ 2i, αgk ∈ {α,β} and if αgk = β then kσ ≥ 2i + 1 while if αgk = α then
kσ ≤ 2i.

(b) for all k ≥ 2i +1, βgk ∈ {α,β} and if βgk = α then kσ ≤ 2i while if βgk = β then
kσ ≥ 2i + 1.

Thus any element satisfying the four conditions of the lemma fixes F . Conversely,
suppose g = (g1, . . . , gn)σ fixes F and let k be such that 2r1 + 1 ≤ k ≤ 2r2. Since
g fixes xr1 we have βgk ∈ {α,β} and if βgk = α then kσ ≤ 2r1. Now g also fixes xr2

and so αgk ∈ {α,β}. If αgk = β then kσ ≥ 2r2 + 1 and βgk = α. However, since g

fixes xr1 the fact that βgk = α is meant to imply that kσ ≤ 2r1, a contradiction. Thus
αgk = α and βgk = β and part (i) holds. Part (ii) then follows from the fact that g

fixes xr1 (condition (b)) and xi (condition (a)). Part (iii) follows from condition (a)
applied to xr1 and the fact that σ fixes {2r1 + 1, . . . ,2r2} while part (iv) follows from
condition (b) applied to xr2 and part (ii).

By part (ii), GF fixes X = {1,2, . . . ,2r1,2r2 + 1,2r2 + 2, . . . , n} setwise.
Also by parts (iii) and (iv), GF contains all elements (1,1, . . . ,1)σ with σ ∈
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Sym({1,2, . . . ,2r1}) × Sym({2r2 + 1,2r2 + 2, . . . , n}). Since GF contains the el-
ement ((α,β),1, . . . ,1, (α,β))(1, n), it follows that GF acts transitively and also
primitively on the set X. As GF contains an element inducing a 2-cycle on X, [10,
Theorem 3.3A] implies that GX

F = Sym(X). �

Before determining the diagram of the geometries yielded by Construction 4.3, we
describe some rank 2 geometries. For each such geometry, we provide a diagram

s1
n1

s2
n2

d1 g d2

where for i = 1 and 2, ni denotes the number of elements of type i, si + 1 is the
number of elements of type 3 − i incident to an element of type i, di is the largest
distance an element can be from an element of type i in the incidence graph of the
geometry, and g denotes the gonality of the geometry, that is, 2g is the length of the
smallest cycle in the incidence graph.

We use Ua,b(m) to denote the rank 2 geometry whose elements of type 1 are the
a-subsets of {1, . . . ,m}, whose elements of type 2 are the b-subsets of {1, . . . ,m} and
incidence is given by inclusion. The diagram for U2,4(6) is

5
15

5
15

3 2 3

We use Ua,b(m, δ) to denote the rank 2 geometry whose elements of type 1 are
the a-subsets of {1, . . . ,m} with each element of the a-subset coloured from a palette
of size δ, and whose elements of type 2 are the b-subsets of {1, . . . ,m} with each
element of the b-subset coloured from the same palette of size δ. A coloured a-
subset is incident with a coloured b-subset if one is contained in the other. Note that
Ua,b(m,1) = Ua,b(m). The diagram for U2,4(m, δ) with δ ≥ 2 and m ≥ 5 is

(
m−2

2

)
δ2 − 1

(
m
2

)
δ2

(4
2

) − 1

(
m
4

)
δ4

4 2 4

Note that given a 2-set {x, y} with x and y both coloured blue, the elements incident
with it are the coloured 4-sets containing it while the elements at distance 2 are the
coloured 2-sets for which either the underlying 2-set is disjoint from {x, y}, or any x

or y it contains is coloured blue. The elements at distance 3 are the remaining 4-sets,
that is those containing at least one x or y coloured not blue, and the elements at
distance 4 are the remaining coloured 2-sets, that is those containing at least one x

or y coloured not blue. Given a 4-set {x, y,u, v} with all elements coloured blue, the
elements incident with it are the 2-sets it contains, the elements at distance 2 are the
4-sets containing at least two of {x, y,u, v} coloured blue, the elements are distance
3 are the remaining coloured 2-sets and the elements at distance 4 are the remaining
4-sets.
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Finally, we use Ua,b(m, δ) to denote the rank 2 geometry whose elements of type
1 are the a-subsets of {1, . . . ,m} with each element of the a-subset coloured from a
palette of size δ, and whose elements of type 2 are the b-subsets of {1, . . . ,m} with
each element of the b-subset coloured from the same palette of size δ. A coloured
a-subset is incident with a coloured b-subset if their underlying subsets are disjoint.
The geometry U2,2(m, δ) with m ≥ 6 and δ ≥ 2 has diagram

(
m−2

2

)
δ2 − 1

(
m
2

)
δ2

(
m−2

2

)
δ2 − 1

(
m
2

)
δ2

3 2 3

Note that given a 2-set α = {x, y} coloured blue, the elements incident to it are the
2-sets of the other type that contain neither x nor y, the elements at distance 2 all the
2-sets of the same type as α other than α, and the elements at distance 3 are all the
remaining 2-sets of the other type.

Theorem 4.9 Let Γb be the geometry yielded by Construction 4.3 with 2 ≤ b ≤
�n/2� − 1. Then the diagram of Γb is

Σ1 Σ2 Σ2 Σ2 Σ2 Σ3

Σ4

where Σ1 = U4,2(n−2b+6, |Δ|−1), Σ2 = U2,4(6), Σ3 = U2,4(n−2b+6, |Δ|−1)

and Σ4 = U2,2(n − 2b + 6, |Δ| − 1).

Proof Let F be a flag of rank b − 2. By Lemma 4.7, G is flag-transitive on Γb so we
may assume that F ⊂ Kb = {x1, . . . , xb}. Let xu and xv be the two elements of Kb\F
with u < v. Since G is flag-transitive on Γb , the residue of F is (xu)

GF ∪ (xv)
GF

and the set of elements in this residue incident with xu is (xv)
GF∪{xu} while the set of

elements incident with xv is (xu)
GF∪{xv } . We split our analysis into several cases:

1 < u < v < b By Lemma 4.8, if (g1, . . . , gn)σ ∈ GF then

(i) αgk = α and βgk = β for all k such that 3 ≤ k ≤ 2b.
(ii) for k ∈ {1,2}, αgk ∈ {α,β} and if αgk = β then kσ ≥ 2b + 1 while if αgk = α

then kσ ∈ {1,2}.
(iii) for all k ≥ 2b + 1, βgk ∈ {α,β} and if βgk = α then kσ ∈ {1,2} while if βgk = β

then kσ ≥ 2b + 1.

Suppose first that v �= u + 1. Then GF induces

Sym
({1,2,2b + 1,2b + 2, . . . , n}) × Sym

({2u − 1,2u,2u + 1,2u + 2})

× Sym
({2v − 1,2v,2v + 1,2v + 2}) × Sb−5

2
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on {1, . . . , n}. It follows that (xu)
GF consists of all n-tuples with entries {1, . . . ,2(u−

1)} equal to α, entries {2u + 3, . . . , n} equal to β and precisely two of the entries
{2u − 1,2u,2u + 1,2u + 2} equal to α and the remaining two equal to β . Hence
|(xu)

GF | = 6. Similarly |(xv)
GF | = 6. Moreover, since xu−1, xu+1 ∈ F and xu /∈ F ,

Lemma 4.8, implies that GF∪{xv} contains Sym({2u − 1,2u,2u + 1,2u + 2}) and
so xv is incident with each element of (xu)

GF . Thus the residue of F has incidence
graph the complete bipartite graph K6,6.

When v = u + 1, GF induces

Sym
({1,2,2b + 1,2b + 2, . . . , n})

× Sym
({2u − 1,2u,2u + 1,2u + 2,2u + 3,2u + 4}) × Sb−4

2

on {1, . . . , n}. Then (xu)
GF consists of all n-tuples with entries {1, . . . ,2(u − 1)}

equal to α, entries {2u + 5, . . . , n} equal to β and precisely two of the entries
{2u − 1,2u,2u + 1,2u + 2,2u + 3,2u + 4} equal to α and the remaining four equal
to β . Thus |(xu)

GF | = 15. Similarly |(xv)
GF | consist of all n-tuples with entries

{1, . . . ,2(u − 1)} equal to α, entries {2u + 5, . . . , n} equal to β and precisely four
of the entries {2u − 1,2u,2u + 1,2u + 2,2u + 3,2u + 4} equal to α and the remain-
ing two equal to β . Now if (g1, . . . , gn)σ ∈ GF∪{xv}, then by Lemma 4.8, σ fixes
{2u−1,2u,2u+1,2u+2} and GF∪{xv} includes Sym({2u−1,2u,2u+1,2u+2}).
Thus in the residue of F , xv is incident with those elements of (xu)

GF for which pre-
cisely two of the entries from {2u − 1,2u,2u + 1,2u + 2} are equal to α. Similarly,
the elements of the residue of G incident with xu are those elements of (xv)

GF such
that the entries {2u − 1,2u} are equal to α. Thus the residue of F is isomorphic to
U2,4(6).

u = 1 and 2 < v < b By Lemma 4.8, GF induces

Sym
({1,2,3,4,2b + 1,2b + 2, . . . , n}) × Sb−4

2 × Sym
({2v − 1,2v,2v + 1,2v + 2})

on {1, . . . , n}, while GF∪{x1} induces

Sym
({1,2,2b + 1,2b + 2, . . . , n}) × Sym

({3,4})

× Sb−4
2 × Sym

({2v − 1,2v,2v + 1,2v + 2}).
Moreover, if g = (g1, . . . , gn)σ is an element of GF such that σ fixes {3,4} then
αgk = α for k = 3 and 4. Furthermore, g also fixes x1 if and only if βgk = β

for k = 3 and 4. Hence |xGF

1 | = (|Δ| − 1)2
(
n−2b+4

2

)
. Note that an element of GF

fixes xv if and only if it fixes {2v − 1,2v} setwise. Since both GF and GF∪{xu} fix
{2v − 1,2v,2v + 1,2v + 2} setwise and induce Sym({2v − 1,2v,2v + 1,2v + 2}),
it follows that |(xv)

GF | = (4
2

) = 6 and (xv)
GF∪{xu} = (xv)

GF . Thus the residue of F is

the complete bipartite graph with bipartite halves of size (|Δ| − 1)2
(
n−2b+4

2

)
and 6.

1 < u < b − 1 and v = b Arguing as in the previous case yields that the
residue of F is the complete bipartite graph with bipartite halves of size 6 and
(|Δ| − 1)2

(
n−2b+4

2

)
.
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u = 1 and v = 2 < b By Lemma 4.8,

(GF ){1,...,n} = Sym
({1,2,3,4,5,6,2b + 1,2b + 2, . . . , n}) × Sb−3

2 ,

(GF∪{x1}){1,...,n} = Sym
({1,2,2b + 1,2b + 2, . . . , n}) × Sym

({3,4,5,6}) × Sb−3
2 ,

(GF∪{x2}){1,...,n} = Sym
({1,2,3,4,2b + 1,2b + 2, . . . , n}) × Sym

({5,6}) × Sb−3
2 .

Moreover, if g = (g1, . . . , gn)σ is an element of GF such that σ fixes {3,4,5,6}
setwise, then αgk = α for each k ∈ {3,4,5,6}. Furthermore, g also fixes x1 if and
only if βgk = β for each such k. Hence |xGF

1 | = (|Δ| − 1)4
(
n−2b+6

4

)
. Note that the

elements of x
GF

1 correspond to the n-tuples with entries {7,8, . . . ,2b} equal to β ,
all but r of the entries {2b + 1, . . . , n} equal to β for some r with 0 ≤ r ≤ 4, and
4 − r of the entries {1,2,3,4,5,6} not equal to α. In particular, the elements of x

GF

1
correspond to 4-subsets of {1,2,3,4,5,6,2b + 1,2b + 2, . . . , n} with elements of
{1, . . . ,6} coloured by Δ\{α} and elements of {2b + 1,2b + 2, . . . , n} coloured by
Δ\{β}. Similarly, |xGF

2 | = (|Δ| − 1)2
(
n−2b+6

2

)
and the elements of x

GF

2 correspond
to the 2-subsets of {1,2,3,4,5,6,2b + 1,2b + 2, . . . , n} with elements of {1, . . . ,6}
coloured by Δ\{α} and elements of {2b + 1,2b + 2, . . . , n} coloured with Δ\{β}.

Now (g1, . . . , gn)σ ∈ GF∪{x1} fixes x2 if and only if σ fixes {5,6} setwise. Thus

|xGF∪{x1}
2 | = (4

2

) = 6 and the elements in the residue of F incident with x1 are those
elements with the first two entries equal to α, the last n − 6 entries equal to β , two
of the entries {3,4,5,6} equal to α and the remaining two entries equal to β . The
4-subset corresponding to x1 is {3,4,5,6} with all elements coloured by β and the

2-subsets corresponding to the elements of x
GF∪{x1}
2 are the 2-subsets of this 4-subset

with the inherited colouring.
By Lemma 4.8, if (g1, . . . , gn)σ ∈ GF∪{x2} such that σ fixes {3,4} then αgk = α

for k = 3,4. Such an element then fixes x1 if and only if it is also the case that βgk = β

for k = 3,4. Hence |(x1)
GF∪{x2} | = (|Δ| − 1)2

(
n−2b+4

2

)
. Moreover, (x1)

GF∪{x2} corre-
sponds to the coloured 4-subsets containing the coloured 2-subset corresponding to
x2. It follows that the residue of F is isomorphic to U4,2(n − 2b + 6, |Δ| − 1).

1 < u = b − 1 and v = b Arguing as in the previous case yields that the residue
of F is isomorphic to U2,4(n − 2b + 6, |Δ| − 1).

u = 1 and v = b By Lemma 4.8,

(GF ){1,2,...,n} = Sym
({1,2,3,4,2b − 1,2b, . . . , n}) × Sb−3

2 ,

(GF∪{x1}){1,2,...,n} = Sym
({1,2,2b − 1,2b, . . . , n}) × Sym

({3,4}) × Sb−3
2 ,

(GF∪{xb}){1,2,...,n} = Sym
({1,2,3,4, . . . , n}) × Sym

({2b − 1,2b}) × Sb−3
2 .

Moreover, if (g1, . . . , gn)σ ∈ GF such that σ fixes {3,4} then αgk = α for k = 3,4.
Furthermore, such an element also fixes x1 if and only if βgk = β for k = 3,4.
Hence |xGF

1 | = (|Δ| − 1)2
(
n−2b+4

2

)
and the elements of x

GF

1 correspond to the set
of 2-subsets of {1,2,3,4,2b − 1,2b, . . . , n} with elements of {1,2,3,4} coloured
by Δ\{α} and elements of {2b − 1,2b, . . . , n} coloured by Δ\{β}. Similarly,
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|xGF

b | = (|Δ| − 1)2
(
n−2b+4

2

)
and x

GF

b also corresponds to the set of 2-subsets of
{1,2,3,4,2b−1,2b, . . . , n} with elements of {1,2,3,4} coloured by Δ\{α} and ele-

ments of {2b − 1,2b, . . . , n} coloured by Δ\{β}. Moreover, |xGF∪{xb}
1 | = |xGF∪{x1}

b | =
(|Δ| − 1)2

(
n−2b+2

2

)
. In particular a coloured 2-subset in x

GF

1 is incident with a

coloured 2-subset in x
GF

b if and only if their 2-subsets are disjoint. Thus the residue
of F is isomorphic to U2,2(2 − 2b + 6, |Δ| − 1). �

5 HS type

In this section we give a construction of a GΩ -uniform geometry of arbitrary rank
where G = T × T acts on Ω = T in a primitive action of type HS.

Construction 5.1 Let m ≥ 5 be an integer, T = Am, and let G = T × T acting
on Ω = T by t (t1,t2) = t−1

1 t t2. Let x0 = 1T , and for i ∈ {1, . . . , �m/4�}, let xi =
(1,2)(3,4) · · · (4i − 1,4i) ∈ Ω , the product of 2i transpositions, and let Σ = {xi |
0 ≤ i ≤ �m/4�}. Let X0 = Ω , let Γ0 = (X0,∗, t), where ∗ consists of the pairs (x, x)

for x ∈ X0, and t (x) = 0 for all x ∈ X0. Let K0 = {x0}. For b with 1 ≤ b ≤ �m/4�,
suppose we have constructed Γb−1 and a chamber Kb−1 = {x0, . . . , xb−1}. Let Γb =
Inc(Γb−1,G,Kb−1,Ω,xb, b) as in Construction 3.1, and Kb = Kb−1 ∪ {xb}.

Note that

Gxi
= {

(t1, t2) | t−1
1 xit2 = xi, with t1, t2 ∈ T

}

= {
(t1, t2) | t2 = xit1xi, with t1, t2 ∈ T

}

= {
(t, xi txi) | t ∈ T

}
(3)

and

x
Gxi

j = {
t−1xjxi txi | t ∈ T

} = (xj xi)
T xi . (4)

Since xjxi is a product of 2|j − i| transpositions, and all such elements are conjugate
in T , it follows that (xj xi)

T = (x|j−i|)T .
The following lemma plays a crucial role in the analysis.

Lemma 5.2 Let y ∈ x
Gxi

b ∩ x
Gxj

b with i < j < b ≤ �m/4�. Then when written as a
product of disjoint cycles, y includes (4i + 1,4i + 2) · · · (4j − 1,4j) = xjxi .

Proof By (4) and the remark following it, there exist yb−i ∈ (xb−i )
T and yb−j ∈

(xb−j )
T such that y = yb−ixi = yb−j xj . Thus yb−j yb−i = xjxi = (4i + 1,4i +

2) · · · (4j −1,4j), and we note that the right hand side is a product of exactly 2(j − i)

transpositions moving 4(j − i) points. Since yb−j is a product of 2(b − j) transpo-
sitions and yb−i is a product of 2(b − i) transpositions and 2(b − i) − 2(b − j) =
2(j − i), it follows that yb−j yb−i moves at least 4(j − i) points. Thus the 2(b − j)
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transpositions of yb−j are also transpositions for yb−i , and the disjoint cycle rep-
resentation for yb−i includes (4i + 1,4i + 2) · · · (4j − 1,4j). Since y = yb−ixi it
follows that y also contains (4i + 1,4i + 2) · · · (4j − 1,4j). �

Lemma 5.3 For 0 ≤ b ≤ �m/4�, let Γb be the pregeometry given by Construction 5.1.
Then

(a) Γb is a geometry of rank b + 1 and G is flag-transitive on Γb ,
(b) Γb is thick if b > 0, and
(c) if b > 0 then the rank 2 truncations of Γb are connected (and hence Γb is a

GΩ -uniform geometry).

Proof Part (a): The proof is by induction on b. As chambers are singletons for Γ0,
the statement is trivially true for Γ0. Suppose inductively that 0 < b ≤ �m/4� and
that Γb−1 is a geometry with G flag-transitive on Γb−1. We check that the condition
in Lemma 3.4(b) holds for Γb = Inc(Γb−1,G,Kb−1,Ω,xb, b).

Consider Q ⊆ {x0, x1, . . . , xb−1} and let k = min{i : xi ∈ Q} and j =
max{i : xi ∈ Q}. Since the condition of Lemma 3.4(b) holds for |Q| = 1, by the
definition of Γb , we assume that |Q| ≥ 2 and so k �= j .

Let y1, y2 ∈ ⋂
xi∈Q x

Gxi

b ⊆ x
Gxk

b ∩ x
Gxj

b . Then by (4), there exist z1, z2 ∈ (xb−k)
T

such that y1 = z1xk and y2 = z2xk . Moreover, by Lemma 5.2, each yi contains x′ :=
(4k + 1,4k + 2) · · · (4j − 1,4j) = xkxj in its disjoint cycle representation, and since
xk moves only the points 1, . . . ,4k, it follows that each zi contains x′ in its disjoint
cycle representation. Thus, since zi is a product of 2(b−k) transpositions, there exists
y′
i ∈ Sym({1, . . . ,4k,4j + 1, . . . ,m}), a product of 2(b − k) − 2(j − k) = 2(b − j)

transpositions, such that zi = y′
ix

′ and hence such that yi = y′
ix

′xk .
For distinct i, � ∈ [k, j ], we have from (3) that

Gxi
∩ Gx�

= {
(t, xi txi) | t ∈ T ,x�tx� = xitxi

}

= {
(t, xi txi) | t ∈ CT (x�xi)

}
.

Hence
⋂

xi∈Q

Gxi
= {

(t, xktxk) | t ∈ CT (xkxi) for all xi ∈ Q
}
.

For each i ∈ Q, the product xkxi fixes the set J := {1, . . . ,4k,4j + 1, . . . ,m} point-
wise, and is contained in the disjoint cycle representation for x′ = xkxj . It follows
that the group induced on J by

⋂
xi∈Q CT (xkxi) is Sym(J ). Hence, there exists

t ∈ ⋂
xi∈Q CT (xkxi) such that (y′

1x
′)t = y′

2x
′. Then (t, xktxk) ∈ ⋂

xi∈Q Gxi
and maps

y1 to

t−1y1xktxk = t−1(y′
1x

′xk

)
xktxk = t−1y′

1x
′txk = y′

2x
′xk = y2.

Thus
⋂

xi∈Q CT (xkxi) acts transitively on
⋂

xi∈Q x
Gxi

b . Hence the condition of
Lemma 3.4(b) holds and so by induction, Γb is a geometry of rank b + 1 and G

is flag-transitive on Γb .
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Part (b): Consider the chamber Kb = {x0, x1, . . . , xb}, with b ≥ 1, and let K ′ be
any co-rank 1 flag contained in Kb , with x� the unique point in Kb\K ′. Let k =
min{i : xi ∈ K ′}. Then by (3),

G(K ′) = {
(t, xktxk) | t ∈ CT (xkxi) for all xi ∈ K ′}.

Now
⋂

xi∈K ′ CT (xkxi) induces the wreath product S2 wrS4 on {4� − 3,4� − 2,4� −
1,4�,4� + 1,4� + 2,4� + 3,4� + 4} and so x�xk has at least 6 images under⋂

xi∈K ′ CT (xkxi). Since

x
(
⋂

xi∈K ′ Gxi
)

� =
{

(x�xk)
txk | t ∈

⋂

xi∈K ′
CT (xkxi)

}

it follows that x� has at least 6 images under ∩xi∈K ′Gxi
and so K ′ is contained in at

least 6 chambers. Hence Γb is thick.
Part (c): Since G is primitive, 〈Gxi

,Gxj
〉 = G for all distinct xi, xj ∈ Σ . Hence

by Lemma 3.2(b), the rank 2 truncations are connected. �

Remark 5.4 Let G be as in Construction 5.1 and let H = 〈G,σ 〉 such that σ : T → T ,
t �→ t−1. Then H acts primitively on T with O’Nan-Scott type SD. Since each xi is

an involution, Hxi
= 〈Gxi

, σ 〉. Moreover, if y ∈ x
Gxi

j = (xj xi)
T xi then y = zxi for

some involution z ∈ (xj xi)
T . Now y−1 = xiz = xizxixi and xizxi ∈ (xj xi)

T . Hence

y−1 ∈ x
Gxi

j and so (x
Gxi

j )σ = x
Gxi

j . It follows that H ≤ Aut(Γb) and so Γb is also an

HΩ -uniform geometry for which H acts primitively of type SD on Ω .

Remark 5.5 We do not determine the diagrams for the geometries yielded by Con-
struction 5.1. Note that by [16, Proposition 18.1], a primitive group with O’Nan-Scott
type HS cannot contain a primitive group of any other O’Nan-Scott type, and the only
way it can be contained in a primitive group of another O’Nan-Scott type (other than
the full alternating or symmetric group) is as in Remark 5.4. Thus the geometries
obtained are different to those obtained from Construction 4.3.

6 SD type

It follows from Remark 5.4 that for each k we can construct a GΩ -uniform geometry
of rank k such that G acts primitively of type SD on Ω and the socle of G is the
direct product of 2 simple direct factors. In this section we give a construction for a
group of type SD whose socle is the product of n simple direct factors for any n ≥ 5.

Definition 6.1 Let n ≥ 5 be an integer, let T = Am for some m ≥ 5 and let
D := diag(T n) = {(t, . . . , t) | t ∈ T } < T n, the ‘straight diagonal subgroup’ of T n.
Let G = T wrSn = T n

� Sn in its primitive simple diagonal action on the set Ω

of right cosets of D in T n. That is to say, elements of the ‘base group’ T n of G

act by right multiplication on Ω , and an element σ in the ‘top group’ Sn acts by
σ : D(t1, . . . , tn) �−→ D(t1σ−1, . . . , tnσ−1).
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For an element x = (t1, . . . , tn) ∈ T n, the support of x is the number of entries
of x not equal to 1T . For δ ∈ Ω , δ̄ denotes a representative of the coset δ, so δ = Dδ̄.
We sometimes denote the coset Dδ̄ by [δ̄].

Lemma 6.2 Each element of Ω contains at most one coset representative with sup-
port strictly less than n/2.

Proof Let x ∈ Ω and suppose that x = Dδ with δ of support at most (n − 1)/2. Any
representative of the coset x is of the form v = (t, . . . , t)δ̄ for some (t, . . . , t) ∈ D.
Since the support of δ̄ is at most (n − 1)/2, if t �= 1T then v has strictly more than
half its entries equal to t.1T = t �= 1T and hence has support greater than n/2. �

Construction 6.3 Let Ω , T and G = T wrSn be as in Definition 6.1. Let α be an
involution in T , and for 1 ≤ c ≤ �(n − 1)/4�, let ᾱc = (α, . . . , α

︸ ︷︷ ︸
2c

,1T , . . . ,1T︸ ︷︷ ︸
n−2c

), and let

xc = [ᾱc] = Dᾱc ∈ Ω.

Let Σ = {xc |1 ≤ c ≤ �(n − 1)/4�}, and note that by Lemma 6.2, the elements of Σ

are pairwise distinct (that is, |Σ | = �(n − 1)/4�).
Let X1 = Ω , let Γ1 = (X1,∗, t), where ∗ consists of the pairs (x, x) for x ∈

X1, and t (x) = 1 for all x ∈ X1. Let K1 = {x1}. For 1 < b ≤ �(n − 1)/4�, sup-
pose we have constructed Γb−1 and chamber Kb−1 = {x1, . . . , xb−1}. Let Γb =
Inc(Γb−1,G,Kb−1,Ω,xb, b) as in Construction 3.1, and Kb = Kb−1 ∪ {xb}.

Let G0 = 〈D,Sn〉 and note that for each xs ∈ Σ , the point stabiliser Gxs is equal
to h−1

s G0hs where

hs = (α, . . . , α
︸ ︷︷ ︸

2s

,1T , . . . ,1T︸ ︷︷ ︸
n−2s

) ∈ T n < G. (5)

(This is because G0 is the stabiliser in G of x0 := [(1T , . . . ,1T )] and xs = x
hs

0 .)

We need to understand the orbits x
Gxs
a where xs , xa ∈ Σ with s < a ≤ �(n−1)/4�.

Observe that each y ∈ x
Gxs
a is equal to x

h−1
s t̄σhs

a for some t̄ = (t, . . . , t) ∈ D < G and
σ ∈ Sn < G. Recall that xa = [ᾱa], where ᾱa = (α, . . . , α

︸ ︷︷ ︸
2a

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

). We define a

special representative for the coset x
h−1

s t̄σhs
a , namely

Rep
(
x

h−1
s t̄σhs

a

) = (
1T , . . . ,1T︸ ︷︷ ︸

2s

, αt , . . . , αt

︸ ︷︷ ︸
2a−2s

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

)σ
(α, . . . , α
︸ ︷︷ ︸

2s

,1T , . . . ,1T ),

(where αt = t−1αt). It can be checked easily that Rep(x
h−1

s t̄σhs
a ) is an element of the

coset x
h−1

s t̄σhs
a .
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Lemma 6.4 Let xs, xa ∈ Σ with s < a ≤ �(n − 1)/4�, and let h−1
s t̄σhs ∈ Gxs . Then

the support of Rep(x
h−1

s t̄σhs
a ) is at most 2a ≤ (n − 1)/2. Moreover Rep(x

h−1
s t̄σhs

a ) is

the unique representative of x
h−1

s t̄σhs
a with support at most (n − 1)/2.

Proof First observe that (1T , . . . ,1T︸ ︷︷ ︸
2s

, αt , . . . , αt

︸ ︷︷ ︸
2a−2s

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

) has support 2a − 2s.

Now, σ permutes the entries of this n-tuple, preserving its support, and then multi-

plying on the right by hs right-multiplies the first 2s entries by α. Thus Rep(x
h−1

s t̄σhs
a )

has support at most (2a − 2s) + 2s = 2a ≤ (n − 1)/2. The second assertion follows
from Lemma 6.2. �

For xs, xa ∈ Σ with s < a ≤ �(n − 1)/4�, and a subset Y of x
Gxs
a , define

RepSet(Y ) = {
Rep(y) |y ∈ Y

}
.

Note that Lemma 6.4 implies that RepSet(Y ) is well-defined and |RepSet(Y )| = |Y |.

Lemma 6.5 Let xs , xa ∈ Σ with s < a. Then RepSet(x
Gxs
a ) consists only of vectors

Rep(y) such that non-α[1,2s](Rep(y)) + non-1T [2s+1,n](Rep(y)) = 2a − 2s.

Proof Let y ∈ x
Gxs
a . Then y = x

h−1
s t̄σhs

a for some t̄ = (t, . . . , t) ∈ diag(T n) < G and
σ ∈ Sn < G, and Rep(y) = vσ hs where

v = (
1T , . . . ,1T︸ ︷︷ ︸

2s

, αt , . . . , αt

︸ ︷︷ ︸
2a−2s

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

)
.

Since σ only permutes entries, the n-tuple vσ has exactly 2a − 2s entries equal to
αt , and the remaining entries all equal to 1T . Let d be the number of entries equal
to αt in coordinates 1 to 2s of vσ . Then d ≤ 2a − 2s, and exactly 2a − 2s − d

entries from 2s + 1 to n are equal to αt ; so non-1T [2s+1,n](vσ ) = 2a − 2s − d . When
we right-multiply by hs (to obtain Rep(y)), the entries of vσ from 1 to 2s equal to
1T become α, and the remaining d entries from 1 to 2s (all equal to αt ), all become
αtα �= α. Hence non-α[1,2s](Rep(y)) = d . The entries 2s+1 to n of vσ are unchanged
by hs , so non-1T [2s+1,n](Rep(y)) = non-1T [2s+1,n](vσ ) = 2a−2s −d . It follows that
non-α[1,2s](Rep(y)) + non-1T [2s+1,n](Rep(y)) = 2a − 2s. �

Corollary 6.6 Let xi, xj and xa be in Σ with 1 ≤ i < j < a ≤ (n − 1)/4, and let

y ∈ x
Gxi
a ∩ x

Gxj
a . Then entries 2i + 1 to 2j of Rep(y) are all α.

Proof By Lemma 6.5 non-α[1,2s](Rep(y)) + non-1T [2s+1,n](Rep(y)) = 2a − 2s for
s ∈ {i, j}. Note that Rep(y) ∈ T n. Thus the conditions of Lemma 4.4 hold with Δ =
T , β = 1T and parameters (i, j, n) being (2i,2j,2a). The result now follows from
Lemma 4.4. �

For an n-tuple v we write vr to denote the rth entry of v.
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Lemma 6.7 For 1 ≤ b ≤ (n − 1)/4, let Γb be the pregeometry given by Construc-
tion 6.3. Then

(a) Γb is a geometry of rank b and G is flag-transitive on Γb ,
(b) Γb is thick if b > 1, and
(c) if b > 1 then the rank 2 truncations of Γb are connected (and hence Γb is a

GΩ -uniform geometry).

Proof Part (a): The proof is by induction on b. As ∗ comprises (x, x) for x ∈ X1,
the statement is trivially true for Γ1. Suppose that 1 < b ≤ �(n − 1)/4� and that
Γb−1 is a geometry with G flag-transitive on Γb−1. We check that the condition in
Lemma 3.4(b) holds for Γb = Inc(Γb−1,G,Kb−1,Ω,xb, b). Let Q be a non-empty
subset of Kb−1 = {x1, . . . , xb−1}. We need to show that

⋂
xs∈Q Gxs is transitive on

⋂
xs∈Q x

Gxs

b .
Let i be the smallest subscript in Q and j the largest. If i = j then Gxi

=
⋂

xs∈Q Gxs is transitive on x
Gxi

b = ⋂
xs∈Q x

Gxs

b . So we may assume that i < j . It
follows from Corollary 6.6 that:

all elements of RepSet

( ⋂

xs∈Q

x
Gxs

b

)

have entries 2i + 1 to 2j equal to α. (6)

Let u and u′ be elements of
⋂

xs∈Q x
Gxs

b . Recall that for each xs ∈ Q, Gxs =
h−1

s G0hs where G0 = 〈D,Sn〉 and hs is as in (5) (just after Construction 6.3). Thus

for each y ∈ ⋂
xs∈Q x

Gxs

b and xs ∈ Q, there exists t̄ ∈ D and σ ∈ Sn such that y =
x

h−1
s t̄σhs

b .

Claim 1 Let t̄σ ∈ G0 be such that u = x
h−1

� t̄σh�

b for some x� ∈ Q, where t̄ =
(t, . . . , t) ∈ D and σ ∈ Sn. Then t−1αt = α.

Proof of Claim 1 Since u ∈ x
Gxi

b (where, as mentioned earlier, i denotes the

smallest subscript in Q) there exists t̄ ′σ ′ ∈ G0 such that u = x
h−1

i t̄ ′σ ′hi

b with t̄ ′ =
(t ′, . . . , t ′) ∈ D and σ ′ ∈ Sn. Now

Rep(u) = Rep
(
x

h−1
i t̄ ′σ ′hi

b

)

= (
1T , . . . ,1T︸ ︷︷ ︸

2i

, αt ′ , . . . , αt ′
︸ ︷︷ ︸

2a−2i

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

)σ ′
(α, . . . , α
︸ ︷︷ ︸

2i

,1T , . . . ,1T︸ ︷︷ ︸
n−2i

).

By (6), entries 2i + 1 to 2j of Rep(u) are equal to α. Since σ ′ only permutes
entries, and since right-multiplication by (α, . . . , α

︸ ︷︷ ︸
2i

,1T , . . . ,1T︸ ︷︷ ︸
n−2i

) alters only the entries

1 to 2i, it follows from the above equation that the entries 2i +1 to 2j of Rep(u) must
all equal αt ′ , and this shows that αt ′ = α. Moreover, since 2a − 2i > 2j − 2i (and
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using the fact that αt ′ = α), the vector (1T , . . . ,1T︸ ︷︷ ︸
2i

, αt ′ , . . . , αt ′
︸ ︷︷ ︸

2a−2i

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

)σ
′

has at

least one entry outside coordinates 2i + 1 to 2j which is equal to α. From this we get

(a) There exists r ∈ [1, n] such that either r > 2j and Rep(u)r = α, or

r ≤ 2i and Rep(u)r = α2.

(b) If r ≤ 2i thenRep(u)r ∈ {
α,α2

}
while if r > 2j then Rep(u)r ∈ {1T ,α}.

(7)

If � = i, then the argument above with t̄ ′σ ′ = t̄σ proves that αt = α. Suppose

then that � �= i, so i < � ≤ j (since x� ∈ Q), and that u = x
h−1

� t̄σh�

b . Then Rep(u) =
Rep(x

h−1
� t̄σh�

b ) = v.h� where

v = (
1T , . . . ,1T︸ ︷︷ ︸

2�

, αt , . . . , αt

︸ ︷︷ ︸
2a−2�

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

)σ and h� = (α, . . . , α
︸ ︷︷ ︸

2�

,1T , . . . ,1T︸ ︷︷ ︸
n−2�

).

If � < j then α = Rep(u)2j = v2j .(h�)2j = v2j ∈ {1T ,αt } and hence by (6), α =
v2j = αt and Claim 1 is proved. This leaves � = j . Now for r > 2j , Rep(u)r =
vr ∈ {1T ,αt }, so if there exists r > 2j with Rep(u)r = α then again we have α =
αt proving Claim 1. Suppose this is not the case. Then by (7), for some r ≤ 2i,
Rep(u)r = α2. However, we also have Rep(u)r = vr(h�)r = vrα ∈ {α,αtα}. Since
α �= α2 it follows that αtα = α2, whence again αt = α. �

Claim 2 There exists z ∈ ⋂
xs∈Q Gxs mapping u to u′.

Proof of Claim 2 Both u and u′ are in x
Gxj

b , and so u = x
h−1

j t̄σhj

b and u′ = x
h−1

j t̄ ′σ ′hj

b

for some t̄ = (t, . . . , t), t̄ ′ = (t ′, . . . , t ′) ∈ D and σ , σ ′ ∈ Sn.
Recalling from Claim 1 that αt = αt ′ = α, we have

(a) Rep(u) = Rep
(
x

h−1
j t̄σhj

b

) = v.hj

(b) Rep
(
u′) = Rep

(
x

h−1
j t̄ ′σ ′hj

b

) = v′.hj

(8)

where

v = (1T , . . . ,1T︸ ︷︷ ︸
2j

, α, . . . , α
︸ ︷︷ ︸

2a−2j

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

)σ ,

v′ = (1T , . . . ,1T︸ ︷︷ ︸
2j

, α, . . . , α
︸ ︷︷ ︸

2a−2j

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

)σ
′
, and hj = (α, . . . , α

︸ ︷︷ ︸
2j

,1T , . . . ,1T︸ ︷︷ ︸
n−2j

).

Observe that v and v′ both have the following properties:

(i) entries 2i + 1 to 2j are all equal to 1T (this follows from (6) and (8) and the fact
that α2 = 1T );

(ii) exactly 2a − 2j entries are α and n − 2a + 2j entries are 1T .
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Hence there exists τ ∈ Sn < G0 such that τ fixes pointwise every coordinate from
2i + 1 to 2j , and such that τ maps

(1T , . . . ,1T︸ ︷︷ ︸
2j

, α, . . . , α
︸ ︷︷ ︸

2a−2j

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

)σ to (1T , . . . ,1T︸ ︷︷ ︸
2j

, α, . . . , α
︸ ︷︷ ︸

2a−2j

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

)σ
′
.

Let z be the element h−1
j τhj of Gxj

. Then

Rep
(
uz

) = Rep
(
x

h−1
j t̄σhj h−1

j τhj

b

) = Rep
(
x

h−1
j t̄σ τhj

b

)

= (1T , . . . ,1T︸ ︷︷ ︸
2j

, α, . . . , α
︸ ︷︷ ︸

2a−2j

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

)στ (α, . . . , α
︸ ︷︷ ︸

2j

,1T , . . . ,1T︸ ︷︷ ︸
n−2j

)

= (1T , . . . ,1T︸ ︷︷ ︸
2j

, α, . . . , α
︸ ︷︷ ︸

2a−2j

,1T , . . . ,1T︸ ︷︷ ︸
n−2a

)σ
′
(α, . . . , α
︸ ︷︷ ︸

2j

,1T , . . . ,1T︸ ︷︷ ︸
n−2j

)

= Rep
(
u′).

It follows from Lemma 6.4 that uz = u′. Finally we prove that z ∈ ⋂
xs∈Q Gxs .

Let xs ∈ Q, and observe that since i ≤ s ≤ j and τ fixes each coordinate from
2i + 1 to 2j , the element τ fixes the vector (1T , . . . ,1T︸ ︷︷ ︸

2s

, α−1, . . . , α−1
︸ ︷︷ ︸

2j−2s

,1T , . . . ,1T︸ ︷︷ ︸
n−2j

).

Thus we have the following:

xz
s = [

(α, . . . , α
︸ ︷︷ ︸

2s

,1T , . . . ,1T︸ ︷︷ ︸
n−2s

)
]h−1

j τhj

= [(
1T , . . . ,1T︸ ︷︷ ︸

2s

, α−1, . . . , α−1
︸ ︷︷ ︸

2j−2s

,1T , . . . ,1T︸ ︷︷ ︸
n−2j

)τ
(α, . . . , α
︸ ︷︷ ︸

2j

,1T , . . . ,1T︸ ︷︷ ︸
n−2j

)
]

= [
(α, . . . , α
︸ ︷︷ ︸

2s

,1T , . . . ,1T︸ ︷︷ ︸
n−2s

)
]
.

Hence z fixes all the xs in Q, and so
⋂

xs∈Q Gxs is transitive on
⋂

xs∈Q x
Gxs

b . Hence
by Lemma 3.4, Γb is a geometry and G is flag-transitive on Γb . By induction, the
result holds for each b ≤ (n − 1)/4.

Part (b): Let i be a type in Γb , so 1 ≤ i ≤ b, and suppose that b > 1. Let
Kb = {x1, . . . , xb} be the chamber of Γb given by Construction 4.3, and write
K ′ = Kb\{xi}. Then all elements x� of K ′ are such that in Rep(x�) entries 2i − 1
to 2i + 2 are either all equal to α or all equal to 1T . Hence G(K ′) contains the sub-
group Sym({2i − 1, . . . ,2i + 2}) ≤ Sn acting on the coordinates. The orbit of

Rep(xi) = (α, . . . , α, α,α,1T ,1T ,
︸ ︷︷ ︸

entries 2i−1 to 2i+2

1T , . . . ,1T )

under the subgroup Sym({2i − 1, . . . ,2i + 2}) contains six distinct n-tuples, which

(by Lemma 6.2) move xi to six distinct elements of Ω . Hence |xG(K ′)
i | ≥ 6, and so
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the co-rank 1 flag K ′ is contained in at least six chambers. Since G is flag-transitive
on Γb , it follows that Γb is thick.

Part (c): Let i, j be distinct types. As G is primitive, we have 〈Gxi
,Gxj

〉 = G, and
it follows from Lemma 3.2(b) that the {i, j}-truncation is connected. �

Remark 6.8 We do not determine the diagrams for the geometries yielded by Con-
struction 6.3. Note that by [16, Proposition 18.1], a primitive group with O’Nan-Scott
type SD and whose minimal normal subgroup is isomorphic to T k with k ≥ 3 can-
not contain a primitive group of any other O’Nan-Scott type, and is not contained
in a primitive group of another O’Nan-Scott type (other than the full alternating or
symmetric group). Thus the geometries obtained are different to those obtained from
Construction 4.3 and Construction 5.1.

7 Proof of Theorem 1.1

As mentioned in the introduction we are concerned with the question of whether the
rank of a thick flag-transitive geometry can be unboundedly large for a given O’Nan-
Scott type of primitive group. In this section we outline how the various constructions
given in Sections 3 to 6 enable us to prove Theorem 1.1 for each of the O’Nan-Scott
types.

TYPE AS The projective space PG(k, q) is a thick geometry of rank k upon which
G = PΓ L(k + 1, q) is flag-transitive. The group G acts primitively of O’Nan-Scott
type AS on each set of elements of a given type. However, for Theorem 1.1 we require
all the actions of our group G to be permutationally isomorphic, which is not the case
here.

Let m = k + 2, and let G = Sm acting on Ω = {1,2, . . . ,m}. Taking b = m − 2,
we use Construction 3.5 to construct a pregeometry Γ of rank b = k. By Lemma 3.6,
Γb is a GΩ -uniform geometry with GΩ primitive of type AS.

TYPE PA Theorem 1.1 for the PA case follows from the following lemma.

Lemma 7.1 For each positive integer k ≥ 1 and nonabelian simple group T , there
exist a positive integer n ≥ 2, a primitive group G of O’Nan-Scott type PA with so-
cle T n on a set Ω and a GΩ -uniform geometry of rank k.

Proof Let n = 2k + 2, let T act primitively on a set Δ and let G = T wrSn act
on Ω = Δn in product action. As seen in Table 2, G is primitive of O’Nan-Scott
type PA on Ω and Soc(G) = T n. Taking b = n/2 − 1 = k, we use Construction 4.3
to construct a pregeometry Γ of rank b = k. By Lemma 4.7, Γb is a GΩ -uniform
geometry. �

Instead of varying the parameter n to achieve arbitrary rank, we may also fix n and
vary T to achieve the same outcome.
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Lemma 7.2 Let k ≥ 1 and n ≥ 2 be positive integers. Then there exist a simple
group T , a primitive group G of O’Nan-Scott type PA with socle T n on a set Ω

and a GΩ -uniform geometry of rank k.

Proof Let m = k + 2, let H = Sm and Δ = {1, . . . ,m}. Taking b = m − 2 = k,
Lemma 3.6 implies that Construction 3.5 yields a HΔ-uniform geometry Γb of rank
k with HΔ primitive of type AS. By Lemma 4.2, we can then apply Construction 4.1
to Γb to obtain a GΩ -uniform geometry Γ = Σn of rank k, where G = H wrSn acts
primitively of type PA on Ω = Δn. The socle of G is An

m. �

TYPE HS Let m = 4k + 1, T = Am and G = T × T acting on Ω = T as in Con-
struction 5.1. Letting b = �(n − 1)/4�, Lemma 5.3 implies that the geometry Γb

yielded by Construction 5.1 is a GΩ -uniform geometry of rank k. Moreover, GΩ is
primitive of type HS.

TYPE HC Theorem 1.1 for the HC case follows from the following lemma.

Lemma 7.3 For each positive integer k ≥ 1 and nonabelian simple group T , there
exist a positive integer n ≥ 1, a primitive group G of O’Nan-Scott type HC with
socle T 2n on a set Ω and a GΩ -uniform geometry of rank k.

Proof Let n = 2k+2, let H = T ×T act primitively of O’Nan-Scott type HS on a set
Δ = T , and let G = H wrSn in product action on Ω = Δn. As seen in Table 2, G is
primitive of O’Nan-Scott type HC on Ω and Soc(G) = T 2n. Taking b = n/2−1 = k,
we use Construction 4.3 to construct a pregeometry Γb of rank b = k. By Lemma 4.7,
Γb is a GΩ -uniform geometry. �

Instead of varying the parameter n to achieve arbitrary rank, we may also fix n and
vary T to achieve the same outcome.

Lemma 7.4 Let k,n ≥ 1 be positive integers. Then there exist a simple group T , a
primitive group G of O’Nan-Scott type HC with socle T 2n on a set Ω and a GΩ -
uniform geometry of rank k.

Proof Let m = 4k + 1 and let H = Am × Am acting primitively of type HS on
Δ = Am. As seen in the discussion of the HS case we can construct a HΔ-uniform
geometry Σ of rank k from Construction 5.1. For each positive integer n ≥ 1 we can
then apply Construction 4.1 to Σ to obtain a pregeometry Γ = Σn of rank k, where
G = H wrSn acts primitively of type HC on Ω = Δn. The socle of G is A2n

m . By
Lemma 4.2, Γ is a GΩ -uniform geometry. �

TYPE SD Using the notation of Remark 5.4, the GΩ -uniform geometry of rank k

given by Construction 5.1 with G primitive of type HS on Ω is also an HΩ -uniform
geometry with H primitive of type SD on Ω . This example is sufficient to prove
Theorem 1.1 in the SD case. It has Soc(H) = Am×Am with two simple direct factors.
However, it is possible to have a primitive group of type SD whose socle has an
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arbitrary number of simple direct factors and where these factors are not alternating
groups. Such groups can still give rise to a GΩ -uniform geometry of arbitrarily large
rank.

Lemma 7.5 Let n ≥ 2, T be a nonabelian simple group and let k = max{2, �(n −
1)/4�}. Then there exists a primitive group G of type SD with socle T n on a set Ω

and a GΩ -uniform geometry of rank k.

Proof Let G be the primitive group of type SD on the set Ω used in Construction 6.3.
The socle of G is T n.

Suppose first that k = 2. Let Σ = {x1, x2} ⊂ Ω with x1 �= x2. Let X1 = Ω , let
Γ1 = (X1,∗, t), where ∗ consists of the pairs (x, x) for x ∈ X1, and t (x) = 1 for all
x ∈ X1. Let K1 = {x1}, and let Γ = Inc(Γ1,G,K1,Ω,x2,2) as given by Construc-
tion 3.1. Then by Lemma 3.2, Γ is a GΩ -uniform geometry of rank 2.

Next suppose that (n − 1)/4 ≥ 3 and let b = k = �(n − 1)/4�. By Lemma 6.7 the
geometry Γb yielded by Construction 6.3 is a GΩ -uniform geometry of rank k. �

The following question remains open.

Question 7.6 Let n, k ≥ 2 be positive integers. Is there a nonabelian simple group T ,
a primitive group G of type SD on a set Ω with Soc(G) = T n and a GΩ -uniform
geometry of rank k?

Note that taking truncations of the examples produced to prove Lemma 7.5 gives
a positive answer if k ≤ �(n − 1)/4�, while Remark 5.4 provides an example for all
k if n = 2.

TYPE CD Theorem 1.1 for the CD case follows from the next lemma.

Lemma 7.7 Let k ≥ 1 and n ≥ 2. Then there exist a nonabelian simple group T ,
a primitive group G of type CD with socle T 2n on a set Ω with (T 2n)α ∼= T n and a
GΩ -uniform geometry Γ of rank k.

Proof Let m = 4k +1, T = Am and H = T �S2 acting on Δ = T as a primitive group
of type SD as in Remark 5.4. Letting b = (m − 1)/4, Lemma 5.3 and Remark 5.4
imply that the geometry Σ = Γb yielded by Construction 5.1 is an HΔ-uniform ge-
ometry of rank k.

For each positive integer n ≥ 2 we can then apply Construction 4.1 to Σ to obtain
a GΩ -uniform geometry Γ = Σn of rank k, where G = H wrSn acts primitively of
type CD on Ω = Δn. The socle of G is T 2n and (T 2n)α ∼= T n. �

As for the previous O’Nan-Scott types there is some flexibility in how we can
achieve arbitrary rank.

Lemma 7.8 Let k ≥ 1, r ≥ 2 be positive integers and let T be a finite nonabelian
simple group. Then there exist a positive integer n, primitive group G of type CD
with socle T rn on a set Ω with (T rn)α ∼= T n and a GΩ -uniform geometry of rank k.
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Proof Let n = 2k + 2, let H be a primitive group on Δ of type SD with socle T r

and let G = H wrSn in product action on Ω = Δn. As seen in Table 2, G is primitive
of O’Nan-Scott type CD on Ω . Taking b = n/2 − 1 = k, we use Construction 4.3
to construct a pregeometry Γb of rank b = k. By Lemma 4.7, Γb is a GΩ -uniform
geometry with GΩ primitive of type CD. The socle of G is T rn and (T rn)α ∼= T n. �

Lemma 7.9 Let n, r ≥ 2 be positive integers, T be a nonabelian simple group and
let k = max{2, �(r − 1)/4�}. Then there exist a primitive group G of type CD with
socle T rn on a set Ω with (T rn)α ∼= T n and a GΩ -uniform geometry Γ of rank k.

Proof By Lemma 7.5, there exists a HΔ-uniform geometry Σ of rank k with H

a primitive group of type SD on Δ and Soc(H) = T r . Then by Lemma 4.2, we can
apply Construction 4.1 to Σ to form a new geometry Γ = Σn which is a GΩ -uniform
geometry of rank k where G = H wrSn is primitive of type CD on Ω = Δn. �

The following question remains open.

Question 7.10 For given integers n, k, r , all at least 2, is there a nonabelian sim-
ple group T , a primitive group G of type CD on a set Ω with Soc(G) = T rn and
Soc(G)α ∼= T n, and a GΩ -uniform geometry of rank k?

Note that taking truncations of the examples produced to prove Lemma 7.9 gives
a positive answer if k ≤ �(r − 1)/4�.

TW AND HA Let n = 2k +2, let H be a primitive group on Δ of O’Nan-Scott type
TW or HA and let G = H wrSn in product action on Δn. As seen in Table 2, G is
primitive of O’Nan-Scott type TW or HA respectively on Ω . Taking b = n/2−1 = k,
we use Construction 4.3 to construct a pregeometry Γb of rank b = k. By Lemma 4.7,
Γb is a GΩ -uniform geometry with GΩ primitive of type TW or HA. This completes
the proof of Theorem 1.1.

For each nonabelian simple group T and positive integer n ≥ 2 there is not neces-
sarily a primitive permutation group G of type TW with Soc(G) = T n. For example
for T = A5 the smallest possible value of n is 6. We note that by [1, Proposition 9.4],
for each nonabelian simple group T , there is a primitive permutation group G of type
TW with socle T |T |.

For the HA case it could be asked whether it is possible to achieve arbitrary rank
by varying the prime p instead of the dimension of the vector space. However, the
following lemma shows that this is not possible.

Lemma 7.11 Let G ≤ AGL(d,p) act primitively of type HA on Ω and suppose that
Γ is a GΩ -uniform geometry of rank k. Then k ≤ d + 1.

Proof Let K = {x1, x2, . . . , xk} be a chamber of Γ . Since G is thick and chamber-
transitive we have Gx1,x2,...,xk

< Gx1,x2,...,xk−1 < · · · < Gx1 . Since G acts transi-
tively on Ω = GF(p)d we may assume that x1 is the zero vector and so Gx1 =
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G ∩ GL(d,p). Then choosing x2 as our first basis vector we see that Gx1,x2 con-
sists of all matrices in Gx1 of the form

(
1 0
vT A

)

where A ∈ GL(d − 1,p) and v ∈ GF(p)d−1. Since Gx1,x2 �= Gx1,x2.x3 it follows that
x3 ∈ Ω\〈x2〉. Hence we can choose x3 as our second basis vector and so Gx1,x2.x3

consists of all matrices in Gx1,x2 of the form

⎛

⎝
1 0 0
0 1 0
vT wT A

⎞

⎠

where A ∈ GL(d −2,p) and v,w ∈ GF(p)d−2. Proceeding in this fashion we see that
for each i we have xi ∈ Ω\〈x1, . . . , xi−1〉 and if k ≥ d + 1 then Gx1,x2,...,xd+1 = 1.
Hence k ≤ d + 1. �

8 Combining different primitive actions

We note that in our constructions so far, G has had the same action on every set Xi .
However, it is possible for a given permutation group to have different O’Nan-Scott
types of faithful primitive (or quasiprimitive) actions on different sets. For example,
let G = A5 wrA6. Then G acts primitively with O’Nan-Scott type PA on a set X1
of size 56, with O’Nan-Scott type SD on a set X2 of size 605 and with O’Nan-Scott
type TW on a set X3 of size 606. Magma [2] calculations show that it is possible to
construct a thick flag-transitive geometry of rank 3 for G whose set of elements is
X1 ∪ X2 ∪ X3 and whose rank 2 truncations are connected.

Question 8.1 Suppose that G is flag-transitive on a thick geometry Γ with connected
rank 2 truncations such that for each type i, GXi ∼= G is primitive. Suppose also that
there exist distinct types i, j such that GXi and GXj have primitive actions of different
kinds. Is there a bound on the rank of Γ ?
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