ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Autotopism groups of cyclic semifield planes

Ulrich Dempwolff

DOI: 10.1007/s10801-011-0286-4

Abstract

In this article we investigate the autotopism group of the so-called cyclic semifield planes. We show that the group generated by the homology groups of the nuclei is already the full group of autotopisms that are linear with respect to the nuclei. The full autotopism group is also computed with the exception of one special subcase.

Pages: 641–669

Keywords: keywords semifield; autotopism group; finite plane

Full Text: PDF

References

1. Aschbacher, M.: Finite Group Theory, 2nd edn., Cambridge Univ. Press, Cambridge (2000)
2. Bell, G.: Cohomology of degree 0, 1 and 2 of SLn(q) I-II. J. Algebra 54, 216-238, 239-259 (1978)
3. Dembowski, P.: Finite Geometries. Springer, Berlin (1968)
4. Dempwolff, U.: On irreducible semilinear transformations. Forum Math. 22, 1193-1206 (2010)
5. Hughes, D., Piper, F.: Projective Planes. Springer, Berlin (1973)
6. Jha, V., Johnson, N.: An analog of the Albert-Knuth theorem on the orders of finite semifields and a complete solution to Cofman's subplane problem. Algebras Groups Geom. 6, 1-35 (1989)
7. Johnson, N., Marino, G., Polverino, O., Trombetti, R.: On a generalization of cyclic semifields. J. Al- gebr. Comb. 29, 1-34 (2009)
8. Kantor, W.: Finite semifields. In: Hulpke, A., Liebler, R., Penttila, T., Seress, A. (eds.) Finite Geometries, Groups, and Computation, pp. 103-114. Pingree Park Col., USA, Sept. 4-9 2004. de Gruyter, Berlin (2006)
9. Kantor, W., Liebler, R.: Semifields arising from irreducible semilinear transformations. J. Aust. Math.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition