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Abstract In this article we investigate the autotopism group of the so-called cyclic
semifield planes. We show that the group generated by the homology groups of the
nuclei is already the full group of autotopisms that are linear with respect to the
nuclei. The full autotopism group is also computed with the exception of one special
subcase.
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1 Introduction

Let V be an m-dimensional space over a field K = GF(¢"), o € Aut(K) an automor-
phism of order n, and T an irreducible o -linear operator on V. Then

m—1

m—1
S=S(I)=) KT =) "T'K
i=0

i=0

is an additively closed spread set (see [6] and also [8]). Let Ko = GF(gq) be the fixed
field of o, and let ¥ be an arbitrary Kg-isomorphism from V onto S. Then

Xk y=xy(y)

determines on V a presemifield multiplication. Note that if one chooses i such that,
in addition, ¥~ !(1)y(y) = y for y € V, then one obtains even a semifield multipli-
cation. The (pre)semifields of this isotopism class were called cyclic semifields in [6].

U. Dempwolff (B<)
Department of Mathematics, University of Kaiserslautern, 67653 Kaiserslautern, Germany
e-mail: dempwolff @ mathematik.uni-kl.de

@ Springer


mailto:dempwolff@mathematik.uni-kl.de

642 J Algebr Comb (2011) 34:641-669

If n =1, the semifield is actually a field. We therefore say that a cyclic semifield is
properifn > 1.

On the other hand, the spread set S determines a translation plane P = P(T) on
W =V @ V, where the associated spread is

X ={V(o)}U{V(s)|s €S}
with
V(i) =08V, V(s):{(x,xs)|x€V}.

Our aim is to determine the autotopism group of these planes. We will show the
following:

Theorem 1 Let V be an m-dimensional space over K = GF(¢™), 0 € Aut(K) an
automorphism of order n > 1, and T an irreducible, o-linear operator on V. Set
Ko = Ks; =GF(q). Then F = CEndKO(V)(T) is a field isomorphic to GF(¢g™). More-
over the following holds:

(a) The right and middle nuclei of P = P(T) are isomorphic to K, and the left nu-
cleus is isomorphic to F.

(b) Denote by M the normal subgroup of autotopisms of P which are linear with
respect to the nuclei. Then M is the product of the homology groups associated
with the nuclei. In particular,

M~ (K* x K* x F*)/Kj.
For autotopisms outside of M, we state the following:

Theorem 2 We assume that P satisfies the assumptions of Theorem 1 and keep the
notation of this theorem. Assume further that ¢ = p’, where char K = p, and denote
by G the autotopism group of P. Then n divides |G/M|. Moreover, |G/M| divides
f-m-nifn>@m,n),and |G/M| divides f -m -n-(m,n) ifn = (m,n).

We will observe that—in contrast to Theorem 1—the quotient G/M does depend
on the individual operator T and not only on the parameters m and n. In fact, we will
compute the group G/M except for the case that n divides m and n < m, where we
have only incomplete information.

The notation of this paper can be found in Subsects. 2.1 and 3.1 and in the defi-
nitions at the beginnings of Sects. 3 and 4. Section 2 includes some auxiliary results
on field extensions. Section 3 is devoted to the proof of Theorem 1, and Sect. 4 to the
proof of Theorem 2.

In Sect. 5 we determine the full autotopism group G in the case (m,n) = 1. This
result will be used in Sects. 6 and 7, where we treat the cases n > m and n < m,
respectively. The precise structure of G/M (excluding the case n|m, n < m) is given
in Propositions 6.3 and 7.4.

The terminology on semifield planes follows standard texts like [3] or [5].
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2 Semilinear operators and preliminary results

In this section we explain the description of irreducible linear operators of [4]. The
work of Kantor and Liebler [9] on cyclic semifields also contains a representation of
such transformations. However it seems convenient to use the very concrete descrip-
tion of [4]. We also collect some special results on field extensions.

2.1 Description of semilinear operators

We make the following assumptions:

V is an m-dimensional space over the field K = GF(g").
o is an automorphism of K of order n, i.e., Ko = GF(q) is the fixed field.
Set F = GF(¢™),d = (m,n), m’ =m/d, and L = GF(g™").

(D) From [4] we take the following:
Theorem Let V, K, o, etc. satisfy the above assumptions, and let T be an irre-
ducible, o -linear operator on V. Then:

(a) There is a decomposition
V=U® - ®Us

into K -spaces such that U;T = U;_1 foralli (and U_1 = Ug_1).

(b) T induces on each U; an irreducible, o -linear operator.

(c) Each Uj can be identified with L, and T® induces on such a space a mapping of
the form x — wx? with w € L* and y € Aut(L) such that yx = o,

(d) T" restricted to U; has the form {1, where F = Kq[Z].

Using coordinates, we can identify V with L4, U; with Le; (e; a standard basis
vector), and the K -structure of V is given by

d—1
a-x:(axo,a”xl,...,a” xd_l), a€ K, wherex = (xg,...,x4_1) € V.

The action of T is given by
xT = (xl,...,xd,l,wxg),

where ¢ = Nz.r(w) with y and ¢ as in (d) of Theorem. For the remainder of this
paper, T will usually denote a o -linear operator, and in this context the symbols

w and ¢ =Np.r(w)

will always refer to the foregoing representation. Note that any choice of w and ¢ with
¢ =Np.r(w) and F = Ko(¢) defines by the above equation an irreducible semilinear
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transformation. We also formally describe T by the matrix

00 --- 0 yw
1 0 --- 0 O
o1 -+ 0 O
00 --- 1 O

In the sequel we will use similar matrix descriptions for other semilinear transforma-
tions, too.

(II) When we will describe autotopisms, the following two types of semilinear
operators (acting on V = L%) will be relevant:

Let ag,...,aq—1 € L*, ¢ € Aut(L), and let P(mr) = (8i,7(j))0<i, j<a be the per-
mutation matrix associated with the permutation & which is a power of the d-cycle
(0,1, ...,d — 1). The semilinear operator described formally by the matrix

(a) diag(¢ao, ..., pas—1) has diagonal form of type ¢, and
(b) diag(¢ao, ..., paq—1) P () is an operator of permutational form of type ¢.

Definition We call an additive endomorphism S of V linear if it is a linear trans-
formation with respect to the K- and F-structure of V,i.e., (a-x)S =a- (x§) and
(bx)S=b(xS) forac K andb € F.

Lemma 2.2 Let S be an invertible operator on V which is semilinear with respect to
the F- and K -structure. Then S induces a permutation of {Ug, U1, ..., Ug—1} which
lies in the group generated by the cycle (Uy, Uy, ..., Ug—1). If S is even linear, then
S fixes each U;.

Proof Let w be a generator of the field K| = GF(¢?). When we consider w as an
element of F, this element induces on V the Ky-linear map w1. Considering w as an
element of K, we denote the Ky-linear map x > w - x by . In particular, w1 and @
agree on Uy. The U;’s are the homogeneous components of the group (w1, @) on V.
A homogeneous component of a G-module, G a group, is the sum of all irreducible
submoduls of one isomorphism type. This notion of basic representation theory is
connected with Clifford’s theorem (see, for instance, [1], (12.11-13), p. 40) which
is used here in a very elementary fashion. Since S normalizes the group (wl, @), we
see that it induces a permutation on the set {Up, Uy, ..., Uz_1}. Clearly, if S is linear,
then S fixes each U;.

So assume that S is not linear. The operator 7' from 2.1 satisfies the assertion of the
lemma. So adjusting S by a power of T, we may assume wlog that S fixes Uy. Denote
by ¢ the automorphism induced by S on F and by i the automorphism induced by
S on K. Then, for u € Uy, also uS € Uy, and

oV uS)=w’ - wS) = (w-u)S = (ou)S = us).
Hence,
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Now let u € U;, i > 0, and assume that uS € U;. Then,
0¥ WS) =" - (uS) = (@-u)S = (" u)S =" * uS).
Hence, a)w"j = a)"id’, and therefore,
w0V =0 or T =@V =
which in turn implies that i = j as |j — i| < d. The proof is complete. d
The next result is known (see [2]). For convenience, we supply a proof.

Lemma 2.3 Let V, W be finite-dimensional L-spaces. Let L : K be a Galois ex-
tension with Galois group T'. For y € I', denote by H, the K -subspace of y-linear
mappings in Homg (V, W). Then

Homg (V. W) =P H, .
yel

Proof Assume that [L : K] = ¢, dimgyV = m, and dim; W = n. Then
dimg Homy (V, W) = €mn and dimg Homg (V, W) = 2mn. If T is invertible and
y-linear, then H, = THomy (V, W), so that dimg H, = ¢mn, too. Hence, it suffices

to show that
> H,=PH,.

yel yell

We proceed by induction and suppose that, for any subset A C I' of size < r, we
have already shown ) s\ Hs = @;cp Hs, and let 2 = {wy, ..., w,} be an r-subset.
Assume that

0=Ti+--+T,, TicH,,.

‘We have to show that 7; =0 for all i.
Let L = K[c]. Then, forv e V,

r r r r
v(Z ]}c"”) =c“v Z T, = —c® vl = —(cv)T) = Zc‘“"vTi = v(Z Tic‘”").
i=2 i=2 i=2 i=2

Hence, ) ; T;c®' =), Tic“. Since each T;c®' and each Tjc® are w;-linear, induc-
tion forces T;c®! = T;c®, and thus T; = 0 for i > 1 by the choice of c. Then also
T, =0. O

The following result is a slight generalization of Theorem 5 of [7]. The proof is
taken from this article.

Lemma 2.4 Let L : K be a field extension of degree n, and let {u'|0<i<n})and
fw'|0<i < n} be K-bases of L. Let k be a number between 1 and (n — 1)/2. Set
U= @{;0 Ku' and W = @f:o Kw'. The following two statements are equivalent:

@ Springer



646 J Algebr Comb (2011) 34:641-669

(a) There existsa h € L with W =AU.
(b) w lies in the orbit of u under PGL(2, K) (acting naturally on PG(1, L)).

Moreover, if (a) and (b) hold and if

_a+bu

w=—, a,b,c,deKk,
c+du

then
IS ! K
(c+du)k

Proof (a) = (b) There exist polynomials

k
0% 8 =3 bx) €KIX], 0<isk

j=0
such that
AB;(u) =w'.
In particular,
1 Bi(u)
A= ——\ w = .
Bo(u) Bo(u)

Assume that k =1, By =a + bX, and By = c + dX. Since w ¢ K, the pairs (a, b)
and (c, d) are K -linear independent. Hence, the mapping

a+ bx
c+dx

X =

lies in PGL(2, K), and we are done.
So we assume that k > 1. Substituting XA, we see that

w =B
By (u)
1 Bi_1(u) By(u)

Fori > 1,wealsohave w' =w''w = BoGw) Bot)” showing that
Bi(u)Bo(u) = Bi—1(u)B1(w), 1=<ic<k.

This is a polynomial equation for polynomials in u of degree < n. Hence, we obtain
even an equation of (formal) polynomials in K[X],

BiBo=B;_1B;, 1<i<k.
In particular, B12 = B> By.
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Case 1 By does not divide By. Then there exists f € K[X] irreducible with
Bi =g f", (f,g1) =1, and f' does not divide By. Therefore, f'*! divides B».
A straightforward induction shows that

Bi=gif""!, gieKIX] 1<i<k
In particular, By = gi f t+k=1 Since deg By < k, we see that
degf=1, grek, t=1, ie. Br=g/fk
Then

BoBi 1 Bo

Bi_1 = B, =g f* o

Hence, g1 divides By, and since deg By < k, one has

By
0<degE <1 forE=—.

81

Moreover,
_ B fw
Bi_i(u) E@)’

Set f=a+bX and E =c+dX. Again, w € K implies ad — bc # 0, and w has the
desired form. Note that

wk 1 1
A= = 7€ z K.
Bi(u)  grEm)*  E(u)

Case 2 Now we assume that B divides By. Since w ¢ K, we even have deg B| <
deg By, and using B; = B;_1 B1/ By, we obtain

degB; <k—i, 0<ic<k.
But since By # 0, we have
ByreK, and degBi=k—i, 0<i<k.

This shows that

B
E=E(X)=B—0=c+dX, c,deK,d#0.
1

Using again B; B) = B;_1 B1, we have

Biw) 1 1

B; = ByEF !, w= -, A=m——
Bo(w) E(u) By E*(u)

and we are done.
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(b) = (a) Assume now that

F(u)
w=——, F=a+bX, E=c+dX.
Eu)
Then define
1
a E )k
and inductively
1
BO:X’ BiZU)Bi—lv 1Sl5k

A straightforward computation shows that

Biw)=Fw)'Ew* " eU, 1<i<k,

Bi)= <F(”)>l = w.
Ew)

Now W = AU follows. O

and then

Lemma 2.5 Let L : K be a field extension of degree m, and L = K[u]. For 1 <s <
m, set Ly = @f;& Ku' and let x € L satisfy xLy = Ls. Then x € K.

Proof Write E = Ly and x = ag + aju + --- + a,u’ with a; € K, a; # 0. Since
x=x-1€ E,weseet <s.We claim that t =0 and thus x € K.
Assume that r > 0. Then

xut™t zaousft +alus+17t 4. +a;us.
But then xu*~" ¢ E as u® € L — E, a contradiction. O

Lemma 2.6 Let L : Ko be a field extension of degree mn, (m,n) =1, and let F, K
be subfields such that [F : Kol = m and [K : Ko] = n. Assume further that L : F
is a Galois extension with a cyclic Galois group ¥ = (o) and that K : Ko also is a
Galois extension such that the Galois group is the restriction of X to K. Set Y ={y €
L*|y°y~ ' € K}. Then Y = F*K*.

Proof For y € Y, we have y° = yv, v € K. Hence,

ol

n 1
y=y7 =yn’---v7  =yNgg,(v),

i.e., Ng.k,(v) = 1. By Hilbert’s theorem 90 there exists au € K such thatv = uul.

This implies that (y/u)o = y/u,i.e., y/u € F. O
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Lemma 2.7 Let K : Kq be a cyclic Galois extension with Galois group (¢) of order
> 1. Let L : K be a field extension of degree £ and assume that L = Ko[u]. Then
B = {u |O§i <€} is a K-basis of L. Write x € L asx—széx,u' x;i € K, and
setx = Z 0 X; Pui. Assume thatz € L and that 7-x =7 - Xforallx e L.Thenz € K.

Proof Clearly, B is a K -basis. Let f = X¢ — Z, —o i X' be the minimal polynomial

of u over K and assume that z = Zf:o ziu',zie K, zp #0, k < £.
Suppose that k > 0. Then

k k—1 -1
T S I S
i=0 i=0 i=0

t—k—1 -1
=z Y @'+ Y (ke +akau’,
i=0 i=t—k
ie.,
e—k—1 1
cul =z afu' + Y (cf_py +zfal ).
i=0 i=l—k
Similarly,
e—k—1 -1
P = S a4 T (e b
i=0 i=t—k

Since z; # 0, we obtain a? =gq; for all 0 <i < £. Hence, f € Ko[X], and thus
[L: Ko] < ¥, a contradiction. O
3 Cyclic semifields and the proof of Theorem 1

We first introduce some notation 3.1 for cyclic semifield planes that will be kept
fixed throughout this paper. Then we compute the nuclei (Proposition 3.3) and prove
Theorem 1.

3.1 Description of cyclic semifield planes

Let V,K, F,o0, T etc. have the same meaning as in 2.1. We introduce the following
notation:

m—1 4 m—1 '
S:S(T):@KT’ =@T’K
i=0 i=0

is the spread set of the cyclic semifield plane defined by T'.
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Set W=V @V and
T=X(T)={V(e)}U{V(s)|seS}

with V(00) =0 x V and V(s) = {(v,vs) |v € V}. Then X is the spread on W asso-
ciated with S.
Set d = (m, n). Then

S=So® - ®Sa-1,

where Sg = {s € S| Ugs € Up} and S; = T'Sg = SoT"* for 0 <i < d. Note that S; is
the set of_ transformations_ in S which move U; onto Uj.
Let S’ be the set of o/ -linear transformations in S. Then (see Lemma 2.3)

sto@_“easmin(m,n)—l.
Note that S/ = KT/ if m <n.If m >n,setm =en+r, 0 <r <n. Then

¢

S/ =éBK§"Tf =@;in1<
i=0 i=0

with ¢’ = e if j <r and ¢’ = e — 1 otherwise. Recall that T" = ¢1.

An autotopism « is identified with an element in GLGg()(W), p = char K, which
stabilizes X' and fixes the fibers V (0c0) and V (0). We also write a = (o1, o), where
o is the restriction to V (0), and «» is the restriction to V (c0). We call « diagonal of
type ¢, ¢ € Aut(L), if both o1 and «p are diagonal of type ¢, i.e., we have a matrix
description of ¢ and «» in the form

oy =diag(gag, ..., pas_1), ay =diag(ebo, ..., ¢ba_1).

We call o semidiagonal of type ¢ if a1 is diagonal of type ¢ and oy is permutational
of type ¢, i.e., o> has a matrix description of the form

diag(¢bo, ..., dpba—1) P ()
withmw € ((0,1,...,d —1)).
3.2 Some autotopisms
For 0 #a € K, the maps L, and R, defined by

(x:y)Laz(a'x’)’)a (xa)’)Raz(xaa'y)

are homologies, and we see that middle nucleus N,, = {o € Endg, (V) |aS C S} con-
tains the group

L={L,|0#£aecK}~K*
and the right nucleus N, = {o € Endg, (V) | Sa C S} contains the group

R={R,|0#aecK}~K*
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For 0 # b € F, the map Dj, defined by
(x, y)Dp = (bx, by)
is a kern homology. Hence, the left nucleus N, contains the group
D={Dp|0#£bec F}~F*.

Finally, we observe that the transformation T defined by (x, y)T = (xT, yT) is an
autotopism.

Proposition 3.3 N, ~ N,, ~ K and Ny >~ F.

Proof Let0# B € N,,i.e.,SB =S. Write

k
Tp=Y T'a., k<m—1, a#0.
i=0

Assume that £k > 1. Then

k k—1
Tm—k Tﬂ — Z Tm_k+ia[ — Tmak + Z Tm_k+iai.
i=0 i=0

If k > 2, then T™ay and thus T™ lie in S. This implies ST = S, a contradiction, since
S is proper.

Hence k < 1.If ag #0, then 8 =1a; + T 'apand B =18 €8S, ie, T~ ' €S and
ST-! =8, a contradiction. We conclude that ag = 0 and B = 1a;. This shows that
N, >~ K and by symmetry N,, >~ K.

Let 0 # B € Ny, i.e., sB = Bs for s € S. Since $ also commutes with K, we see
that

B € Cendy, ({TYUK1).
From (Theorem 2.4 in [4]) we get 8 € F. The second claim follows. O

Definition We call an autotopism /inear if it commutes with all elements from the
nuclei.
For instance, the group

M =LRD

is a group of linear autotopisms. 7 is linear with respect to N, but only semilinear
respect to Ny, and N,.

Lemma 3.4 Set K=DN (L xR). Then K>~ K and M >~ (D x L x R)/K.
Proof Suppose L,R, = D, € (L x R) ND. Then

V(1)=V()D;=V(1)LyRy = V(a~'b)
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implies that a = b. Moreover,
V(T)=V(T)De=V(T)LaRy =V (a~'a°T),
which shows thata1a® = 1,i.e.,a € K. The claim follows. O
The following observation will be used repeatedly.

Lemma 3.5 Let i, j be numbers in {0, ...,d — 1}. Let s, s’ be elements in S;, and
0#uecU;j.Thens =s" ifus and us’ have the same image under the projection onto
Uj_i. In particular, if s, s' € So and su; = sb/_, thens =s'.

Proof We may assume that s,s" # 0. Since U;_; = U;s = U;s’, we see that, for
ueU;,u(s—s)=0,andsince s — s’ €S, we obtain s = 5. O

Lemma 3.6 The claim of Theorem 1 is true if d = 1.

Proof Let « be a linear autotopism. We can make the identifications V = L and
xT = wx?. By our assumption we have

(x,y)a = (ax,by), a,belL.

Take 0 # s € S°. Then V (s)a = V (a~'bs), and hence a~'bs € S, i.e.,a~16S? = SO.
By Lemma 2.5 (and as m # n) we geta~'b € K. Adjusting o by L -1 € £, we may
assume wlog that a = b.

Choose now 0 #£ s € S'. Then s = 507, so € S° and

Vis)a = V(a_lsoTa) = V(a"a_lsoT) = V(a"a_ls),
and a®a~ s is a o-linear operator in S. Hence a’a~'s € S! and a®a~ '8! =S!. As

before, we deduce a®a~' € K*. Apply Lemma 2.6 to conclude that a € F*K*. This
shows that « € M. O

Lemma 3.7 Let o be a linear autotopism. For eachi € {0, ...,d — 1}, the following
holds.

(a) « leaves invariant W; = U; & U;.

(b) o) 'Sixr =S;.

(¢) So induces on W; a cyclic semifield spread which is invariant under the linear
autotopism oy, .

(d) Foreachi, there exist a u; € M such that

aw;, = (Li)w;.

Proof (a) By Lemma 2.2, oy and «y leave each U; invariant. Therefore, o leaves all
W;’s invariant.
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(b) Let 0 £ s be in S;. Then V(s)a = V(ozl_]saz), and for j € {0,...,d — 1}, we
have

-1
Uja; saa=Ujsar =Uj_jar =Uj_;.

Hence al_lsoez €s;.

(c) We know that T; = (T¢ )u; s an irreducible, o9 linear operator on the K -space
U;. Note that the fixed field of ¢ is K| ~ GF(g?) and that (T,')”/ and K| induce on
U, the field F'. In particular,

Ky, N Fy, = (K1)y;.

Hence (with K in the role of Kg), Sg induces on W; a cyclic semifield spread, and «
induces a linear autotopism.

(d) Set m =m’d and n = n’d. By Proposition 3.3 and Lemma 3.5 the nuclei of the
semifield induced by Sg on U; coincide with the nuclei of S when restricted to U;.
Moreover, [K : K] =n', [F : K{] =m’, and (m’, n") = 1. Therefore we can apply
Lemma 3.6 to W; and o, . Our statement on the nuclei implies assertion (d). O

Now Theorem 1 follows from Lemma 3.6 and the following:
Lemma 3.8 The claim of Theorem 1 is true if d > 1.

Proof Let « be a linear autotopism. We keep the notation of Lemma 3.7. Suppose
first that Sp induces on Wy a proper cyclic semifield spread. Then by Lemma 3.6
the homology groups associated with the nuclei are already induced by the elements
of M. Hence, we find u € M such that

MWy =OCW0.

Assume now that Sg is not proper; then F = L ~ S, i.e., n divides m, and L =
K&Kt --- & Kg“m/_l. Adjusting « by a suitable element in M, we can as-
sume that (1) y, = 1. We identify (So)y, with L, and since (So)y,(c2) v, = (So) v,
we may identify («2)y, with some z € L. Apply Lemma 2.7. Hence z € K and
(2R, -y, = 1.

So in any case, o can be replaced by some au, u € M, such that (ap)w, = 1.
Then

(0‘1_10‘2)U0 =1.

Using Lemma 3.5, we deduce o =« and («1)y, = 1. Therefore, «; is represented
in matrix form by

oy =diag(l, A, ..., Ag)
with A; € L. Since

(o ' Tar) = Tf),»
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we deduce from Lemma 3.5 that 7% = o T%. Hence, Ag’w =wA; for2 <i <d,
ie., A = Az/ or

AieF, l<i<d, (1

since the fixed field of y in L is F. Moreover, there exists a T’ € S| = TSy such that

V(T =V (o] 'Tar) = V(T

with
0 0 0 YywAg
A0 - 0 0
| 0 A7'A, .. 0 0 —TA
0 0 - Aj'A4 0
and

A= diag(A;l, A;]A2, R A;lAd_l, Ad) € So.

Replacing T by any element in S;, we see by the same argument that Sp.4 = Sy and
A represents an element in Sy since 1 is in Sp.

Set x = A;l. Then xy, € (So)u, and (So)vyXv, = (So)v,. Using Lemmas 3.6 and
3.7 with (So)y, in the role of S, and y in the role of o, we see that xy, € Ky,. This
shows, using (1), that

XUy E(FmK)U():(Kl)U(y (2)

We conclude that A5 !¢ K. This shows (using Lemma 3.5 again) that
A= diag(a, a’, ..., a"d_l)

for some a € Ki. We obtain Az_1 = a, A3_1 = a"AZ_l = aa®, ...,
— d-2 . . d—1 . . d—1

Ad1 =aa’---a’ . Finally, the equation Ay =a°  implies that aa® ---a° =

1. Hilbert’s theorem 90 shows that there is a b € K; with a = b/b° . We conclude that

2 d—1

b b° b°
a1=diag<1,?,7,..., b >,

a=Dy-1LyRyeM
follows. O

and

4 Proof of Theorem 2

In this section we show that autotopisms of P(7") can be described by some kind of
“normal form” (see the definition and 4.1 below). Subsequently we verify Theorem 2.
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Definition Denote by G the subgroup of G (autotopism group of P =P(7T)) con-
sisting of diagonal autotopisms and by G the subgroup which consists of diagonal
and semidiagonal autotopisms (see 3.1).

The next result shows that the quotient G/M is determined by the subgroup Go:

Proposition 4.1 M < Go < G, G = Go(T), and |G : Go| = d. Moreover, all auto-
topisms in G are diagonal, that is, Go = G 1, if n is not a divisor of m.

We need the following:

Lemma 4.2 Let o be an autotopism of P =P(T).

(a) aq and ay are associated with the same field automorphism of F .

(b) oy and ap are associated with the same field automorphism of K, or n divides m.

(c) o1 and oy induce the same permutation on {Uy, ..., Ug—_1}, or n divides m.

(d) Let a1 and oy induce the trivial permutation on {Uy, ..., Ug_1}. Then a1 and oo
are associated with the same field automorphism of K .

Proof (a) Since the kernel of P is F', one knows that « is a semilinear map on W with
respect to F. This shows the claim.

(b) Suppose that «;, i = 1,2, are associated with the field automorphisms ¢; of
K. Then ozl_lozz is associated with the field automorphism t = ¢1_1¢2 of K. Hence,
ozflsoaz is a set of t-linear mappings on V (considered as a K-space) contained
in S. Therefore, T = o* for some 0 <k < min(m — 1,n — 1).

Assume that k > 0. Suppose first that n > m. Then aI_ISm_kag is a set of 0™~
linear mappings inside of S, which is impossible.

Assume next that m >n and set m =en +r, 0 <r <n. Then dimg S/ =e + 1
for 0 < j <r and dimg S/ =eforr < Jj < n. Assume that » > 0. Then dimg Sk =
dimg S° implies k < r. But then

e=dimg S" =dima; 'S Fay =dimS F =e + 1,

a contradiction. Therefore, if ¢ # ¢, i.e., T # 1, we see that n divides m.

(c) Assume that S; = aI_ISootz #So. Then al_lsootz C 8§ is a set of semilinear but
not linear mappings with respect to K. That is, the automorphisms of K associated
with o and op must be different. Apply (b).

(d) By (b) we only have to consider the case that n divides m, i.e., F contains a
subfield isomorphic to K, and each element of K when restricted to U; lies in this
subfield. By (a) the claim follows. Il

Proof of 4.1 By Lemma 2.2 every autotopism of G induces a permutation of the sub-
spaces {U; x 010 <i < d}, and Gy is the kernel of this permutation representation:
Let @ be an element in Gg. If n is not a divisor of m, we see by Lemma 4.2c that
« fixes all spaces 0 x U; and by Lemma 4.2d that «; and «» induce on K the same
field automorphism. Since L is generated by the subfields K and F, we see (using
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Lemma 4.2a) that « is a diagonal autotopism. If n divides m, then K is isomorphic
to a subfield of L = F, and « is semidiagonal by Lemma 4.2a. Moreover, Gg < G.
Using Lemma 2.2 again, we see that we can adjust any autotopism with an ele-
ment from (7') to obtain a semidiagonal autotopism. This implies the second asser-
tion. Clearly, T permutes the above subspaces transitively, and again by Lemma 2.2
the permutation representation is semiregular. Hence |G : Go| = d. Moreover, by
Lemma 4.2c we have that n | m if Go contains a semidiagonal, but not diagonal, au-
totopism. g

Lemma 4.3 Theorem 2 is true.

Proof By Proposition 4.1, |G/ Go| =d, and G is the subgroup of autotopisms in G
which fix Wy = Uy @ Up. The mapping G; — Aut(L) which maps « to ¢, where ¢
is the type of « (see 3.1), is obviously a homomorphism with kernel M. Thus,

|G1/M|||Aut(L)|= f-m-n/d.

Assume first that n does not divide m. Then, by Proposition 4.1, Gy = G, and
therefore |G /M| divides f -m - n.

Assume next now that n divides m. Then (using Lemma 2.2) G induces a
semiregular permutation representation on {0 x U; |0 <i < d} with kernel G1. This
shows that

|Go/Gilld.
Therefore, |G/M| divides f -m -n -d. |

5 The case (m,n) =1
We assume throughout this section that
d=(m,n)=1.
In view of 3.1, we can identify V = L and T with the mapping
x = wx?,
where F' = Ko[¢], L = K[¢], and ¢ = Np.r(w). Clearly, all autotopisms are diago-

nal, i.e., Go = G. Therefore we may write formally (abbreviating ag = e and by = v
in (2.1)):

o] = Pe, oy =¢v, e, veL.

Lemma 5.1 Let m < n and ¢ € Aut(L). The following statements are equivalent:

(a) There exists an autotopism of type ¢.
(b) w?~le @1k
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Proof Let o be an autotopism of type ¢. Use the notation from above. Then al_l =

¢~ f with f =e 9.
Let x € K*. Then ocl_lTkx(xz is ak-linear, ie., al_lTkxocz = Tky for some y €
K*. On the other hand,

k—1
ek & k k=1, ¢  (ww? - w? )¢ k
o T'xay =0 N (ww?---w” ) =T Wf¢” v’
Hence, we have, for 0 <k < m,
k—1
(ww®---w® )® k
wwo - wok! f¢0 veKk. )
Specializing k = 0, we get
V= ﬁ 2)
with A € K*, and taking k = 1, we have
¢ ¢\o
wt U sk 3)
w i

Therefore, the condition

is necessary for the existence of an autotopism of type ¢.

Suppose conversely that this condition is true. Then choose f € L* such that (3)
holds with A = 1 and define v € L* by (2) and then « and «, as above.

We claim that this defines an autotopism. The foregoing computations show that
we have to verify (1) for all 0 < k < n. We notice that the cases k =0, 1, i.e., (2) and
(3), are already true.

Assume k > 2. Then

k=1 (ww“-'-w”kil)‘p f¢ak

(ww(f...wg )¢f¢0’kv_ .
ww - wo ! O wwo e w ! 1o
(ww? - wo Y (o ot oty
- ww® - w T (ff . o8
(O SN (w? s\ (w N
by (3). The proof is complete. d

Lemma 5.2 Let m > n and ¢ € Aut(L). The following statements are equivalent:

(a) There exists an autotopism of type ¢.
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(b) §¢ lies in the orbit of ¢ under PGL(2, K) (acting naturally on PG(1, L)). More-
over, if

_ @,
EQ)’

then EQQOw® ' e L7 'K ifn=2,and E(t) e K, w® ' € L°7'K ifn > 2.

194 F(X),E(X)e K[X], 0<degF(X),deg E(X) <1,

Proof (a) = (b) We choose the same notation as in the proof of Lemma 5.1. Write
m=en-—+r.

Then for O < k < n, we have al_lSkOlz = SK. Set L) = @f:o K;i for k < r and
L(k) = @¢_) K¢' for r <k < n. Then Sk = T*L(k). Set

(u_)u}(r e wo—k71 )¢

k—1

pot
. = 7 v.
ww ...u)

A =
The same computation as in the proof of Lemma 5.1 shows that ArL(k)? = L(k)
(& A,:lL(k) = L(k)?). By Lemma 2.4 (with ¢ in the role of u, £? in the role of w)
we have

o_ FQ, _ _
(=—-+ F(X)=a+0bX, E(X)=g+hXeK[X],
E(¢)
and
| E@©)°, O0<k<r, "
Ak:{E(z)E—l, r<k<n, M4k
In particular,
_ Ar—1 1—¢ o' _g\go ! *
E@)= =w'?)°" (f'77) mod K*.

Ay
This implies that
r—1
g+hse(w )" L'k.

Ifn=2thenr=1and E¢)=g+h{ e (w!'?)L'"7K = (w'=%)L°~ 1K, and we
are done.

So assume n > 2. Thenn — 1 > r or r > 1. We only treat the case n — 1 > r; the
other case is similar. In the first case, A, = A,1| mod K*. Hence,

A 1 _ r _ r
B ety (o) e

This implies that

and therefore
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So we may assume that E(¢) =1 and ¢ = F(¢) =a + b¢.
The case r > 1 (use Ag and A1) leads to the same assertion. So (b) holds.

(b) = (a). Assume now that ;% = %, where F(X), E(X) € K[X] have the

shape from above. Moreover, assume that E(¢) € (w'=?)L'=°K ifn =2 and E@) e
K, w? 1 e L1=9K if n > 2. In both cases choose f € L* such that

()" = E@uw?" mod K*
and define v € L* by the equation
Av=E@©) = fov.

Moreover, define A, L(k), 1 <k < n, as above. Using Lemma 2.4, a straightforward
computation shows that

ArL(K)® = L(k).
Then (xl_l = ¢~ ! f and ay = ¢v define an autotopism of type ¢. O

Remark The case m > n = 2 is implicitly contained as Theorem 5 in the article of
Johnson, Polverino, Marino and Trombettti [7].

6 Thecasen>m

We keep the description of V, T, and autotopisms as explained in 2.1 and 3.1. We
assume throughout this section that

n>m.
In view of the previous section, we may assume that
d=(m,n) > 1.
It will be convenient to write k) instead of k°’ for k € K and j=0,1,...

Lemma 6.1 Assume thatm =n. Then F ~ K >~ L.

(@) Gi/M ~{¢ € Aut(L) |w?! € Ko}.
) Go/G1=Cyifm=2and Gy = G otherwise.

Proof We have S =@/ T'K.

(a) Let o = (1, 2) be a diagonal autotopism of type ¢ € Aut(L). We write afl =
diag(¢’1ao, ¢ lay,..)and ap = diag(¢bg, ¢b1, ...) as in 3.1. By adjusting o with
a suitable element from M we may assume ag = bgp = 1 and o] = «». This implies
(note d = n) that

1

bi=—, 1<i<n.
¢
a;
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For Tk € S| = T K, there exists an £ € K with
ay ' Tkay =T,
and a computation leads to the equations

LA O N A a

N = e 2 ke 9T k@ = -2
1 2

wh=1 =)

¢ pem—D)-
an—l k

This implies that

0 i
NK:Ko(W) =w" .

Therefore, a necessary condition for the existence of a diagonal autotopism of type ¢
is

w1l e K.

We show that this condition is sufficient, too. So take a € K such that Ng.k, @®) =
w?~! and define

ap=1, a :a(o), ar :a(o)a(l), B T | =a®qM -~~a("72),

and a1 = ap as above. A computation shows that
a;l Tor = Ta®.

Now ozl_l Tigy = (al_lTocl)i € T'K follows. Hence, « = (o], a2) defines a diagonal
autotopism associated with ¢.

(b) Let @ = (a1, @) be a proper semidiagonal autotopism of type ¢ € Aut(L). We
split our argument into subcases.

(1) Let v induce a permutation of order n. Then n = 2, and such autotopisms do
exist.

We may assume wlog that

Xop = (blxip, bzx;p, e bn_1x¢ boxg),

n—1°

and by adjusting the autotopism with a suitable element from M we may even assume
that C(l_lotz =T,ap=1, and bg = w. This implies that

1

bi=—, 1<i<n.
¢
a;
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Assume first that n = 2. Then al_l Tay € Sy = K, which shows that there exists a
k € K such that

¢
KO =L kD =gy,
a
1

Choosing ¢ = ¢ and a; = 1, we obtain a solution.
So we assume from now on that n > 2. Then ozfl Tay = kT? for some k € K.
Comparing both sides, we obtain the equations

a =k gy = ke Ope® g (@) (=)

with ¢ = ¢~!. This forces, as in (a), w?~! = Ng.k, (k).
Finally, al_l T" g, € K, i.e., there exists £ € K such that the equations

¢, 0
(-2 _ Y2

¢ ¢,®

o P4 , 00D = yg?_

) s s ) o

a4y a 4y_1
hold. Replacing the a;’s, we get
¢ ¢ ¢
o_w Y =2 W
kD’ 1) k(n=1)"

and

=D — kW@ =D = w_¢
©
This shows that w? = £@ k(D = ¢=DxO forcing w” = w, a contradiction. Hence,
(1) is true.
(2) Let n =2k, k > 1. Then 2 is not the order of the permutation induced by 5.
Assume the contrary. Then

xap = (bkx;f, ...,bnflx;f_l, boxg, e, bkflx,(f_l),
and adjusting o with a suitable element from M, we may even assume that ag = 1

and al_laz = T*. This shows that

byp=w, bij=—, 1<i<k; b; = k<i<n.

1
o

Also, al_l Topy = 2T*+! for some £ € K. We obtain the equations

(O = b, . E(l)wza(fbo, E(k)wza,(fbkfl,
2k+D =af+1bk, e, b =af_1bn_2.
This leads to
al =00, =W gt =g D@ D)
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and
1 =Nk, ().

Finally, we have al_l T*a, = s with s € K. One obtains the equations

sO =p?p, sV = w¢afbk+1, o, s D= w¢a,fflbn_1,

s(k)zafbo, e, s(”_l)zaf_lbk_l.

We eliminate the a;’s and the b;’s and get

¢
o (ki) g gD k) .
S =g g S =wh D 0<i <k
In particular,

o wb® _ w?
(@ . G T g@ .. gD

But then w?") = w?, a contradiction. This implies assertion (2).

Using (1) and (2), we may now assume that » > 2 and that the permutation induced
by o has an odd order r, where r is a proper divisor of n, say n = fr. Then «; leaves
invariant the subspace

V=Uy®Us® - ®Us_1)/,

S=KoKT'@...¢kT" D/

induces on W=V x V a cyclic semifield plane, and o induces a semidiagonal
autotopism whose associated permutation has order r. This shows that we are in the
situation of (1). Hence r < 1, i.e., the autotopism is diagonal. The proof is com-
plete. O

Lemma 6.2 Assume that m < n. Then G is the group of diagonal autotopisms. Let
¢ be an automorphism of L. The following statements are equivalent:

(a) There exists a diagonal autotopism associated with ¢.
(b) w? e Kl+o+to?py—1

In particular, Go/M ~ {¢ € Aut(L) | w?~! € glrot+o Tl py=1y,

Proof The first assertion follows from Proposition 4.1. Let @ = (a1, a2) be a diagonal
autotoplsm associated with ¢ € Aut(L) (we represent the «;’s as in the proof of 6.1).

Since ' = T'K, and §' is the set of o’ -linear maps in S, we have o IS'ay =S'. In
particular, by adjusting o with some element from M we may assume that o] = 3.

This implies that

b; = 0<i<d.

1
o
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There exists some k € K such that al_l T oy = Tk. We obtain the equations
a‘fbo =k .. af,lbd—z =2, w¢ag¢bd_1 = wk@D.
Eliminating the b;’s, we get
ERTCN S SRTCMU S S TU R )
and
w?1al? = kO . fd=Dg¢
Therefore, condition (b) is necessary for the existence of a diagonal autotopism of
type ¢.
Conversely, we assume that condition (b) holds and show the existence of an au-
totopism. Choose ag € L and k € K such that
w?= = kO @D (4177
and define a; for 0 <i <d by
a? =kOKD . =D g?
and a1 = o by
_ -1 -1
xo = (aoxg’ ,...,ad_lxj_l).

Then the above computations show that ozI_ISi ar =S fori =0, 1. Now al_lsiag =
al_lsioq =S’ follows for all 0 <i < m. The proof is complete. g

Summarizing Theorem 1, Proposition 4.1, and Lemmas 5.1, 6.1 and 6.2, we have
the following:

Proposition 6.3 Assume that n > m and use the notation of 2.1 and 3.1. Then M
G1<4Gy<G, M| =(g"—1%*g"™—1)/(qg — 1), and |G : Go| = d. Moreover:

(@) G1/M ~{¢ € Aut(L) | w?~! e KI1+o+-+o" py=1y,
b) Go/G1=Cyif m=n=2and Gy = G otherwise.
7 The case m > n
We assume throughout this section that

m>n.
In view of Sect. 5, we may assume that

d=(m,n) > 1.
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We set further m = m’d, n = n’d. We recall, from 2.1 and 3.1, y € Aut(L) such that
YK = o?. A K-basis for L is {1,¢, {2, Y ’]}, where
n—1

¢ =Npp(w)=ww’ - w

Ifx= Zznzalx,[", x; € K, we set x© = x and

m'—1
RN S
i=0

and define inductively x+D = (x )M,

Lemma 7.1 Assume for ¢ € Aut(L) that {® = a + bt with a, b € Ko. Then for all
x € L, we have

MOrSIe

Proof Both mappings are additive. So it suffices to consider monomials of the form
x =k¢/, k € K. We calculate

i s
e _ T\kodqi—tptet
X ;(Z) a ¢

and
L ()
¢ _ kP (i —tptyo ¢t
x > ( Z) (@~ ¢",
=0
and the claim follows by the assumptions. d

Lemma 7.2 Assume that for ¢ € Aut(L), both §¢ =a+b¢,a,be Ky, and w?l e
K+ 40 Ly =1 hold. Then there exists a diagonal autotopism of type .

Proof Choose s € K and ap € L such that

wh1 = O .S(d—l)ag)()’—l).

Define further ay, as, ... by

a? =ag’s(0), ag =ag)s(0)s(1), ai] =ags(0)~--s(d’2)
and set
otl_l = diag(q)_lao, el qb_lad_l).
Then

a1 = diag(ebo, ..., dpby_1)
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with b; = 1/ai¢. Set o = a1 and o = (ay, ). Then calculations show that
ocI_ISOal =SY and ozl_lToel = Ts. Then even ozl_lson =S, and the assertion fol-
lows. O

Lemma 7.3 Assume thatm >n > d > 1. Then G1/M is isomorphic to the subgroup
of ¢ € Aut(L) such that ¢® = a + b, a,b € Ko, and w?=! € K1+o+-+o"" py=1,

Proof Letm’ =en’ +r',r <n’. Thenm=en+r,r =r'd <n.For0 <k <n, set
(as in the proof of Lemma 5.2)

¢ G K¢, 0<k<r,
L= | DigKeL 0==r

Py K¢, r<k<n.
Also set Lj = @{:0 K{i, ie., Lkky=L,ifk<rand L(k)y=L._1ifr <k <n.
Then

Sk =Lk)T* = T*L (k).

Moreover, S=So @ --- & Sy—1 with S = Py ; S/ = @?igl KT% and Sy = T*So,
0<k<d. Let a = (a1, a2) be a diagonal autotopism of type ¢ € Aut(L). We rep-
resent o:l_l and o as in the proof of 6.1. We verify the assertion of the lemma by
splitting the proof into intermediate steps.
Step 1. The restriction of Sg on W; = U; @ U;, 0 <i < d, defines with respect to
the y-linear operator T¢ a cyclic semifield plane.
Since dimp L = n’ (we identify U; with L), the y-linear operator (Td)U,- is irre-
ducible (see [4], Cor. 2.5). Also, dimg L = m’, and the assertion follows from [6].
Step 2. We have:
(a) §¢ = % F(X),E(X) € K[X], 0 < degF(X),deg E(X) < 1. Moreover,
E@) = @'y a0 mod K* if ' =2 and w?~! € KLV, E(¢)
K ifn' > 2.
(b) ForO<i <dand 0 <k <n/, set

k—1
Y.o..wY ¢
Al — (ww w” ) 27
k= ww}’...wyk_l i r

Then AL L(k)? = L(k) and A} = E(¢)¢ mod K*, where ¢ = ¢ if k < r and ¢’ =
e — 1 if k > r. In particular, Af) = a?b,' = E(¢)° mod K*.

Apply Step 1 and Lemma 5.2 onto the restriction of Sp and o to Wy. Assertion (a)
follows. From the proof of this lemma and the restriction of Sp and « to W; we obtain
the assertions from (b), too (the pair ( f, v) of the proof of Lemma 5.2 is replaced by
(ai, bi)).

Set F=a+ bX and E = g + hX. We can adjust the nominator and denominator
of the rational function F/E by some element from K™, i.e., we can and do assume
that one of the coefficients a, b, g, h is 1.

Step 3. The element E(¢) lies in K* even if n’ = 2.
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A typical element s in SO has the form s = diag(x(o), xO x(d_l)) with x €
L(0)=L,.For0<i <d,wehave

¢ laixDpb; = a?bix(i)d’ = Af)x(i)d’,
which shows that
ozl_lsocz = diag(A8x<0)¢, A(l)x(l)¢, e, Ag_lx(d_l)¢) eSO,
This implies that, for | <i <d and x € L,,

(A1 G=09)D Al D0,

By Step 2 we have Af) = k; E(¢)¢ with some k; € K. We specialize x = ;“j. Then
x09 = x® and AlxD? =k, E(0)*(F($)/())) =k E(0)*"/F(¢)7, and we obtain

CEQTTFON) Y =k EQ)TF©). 6))
Set m; = k" . Then taking j = e, we get, for 1 <i <d,
Z((j)(bo)j( e])é-]_mZ(>b] e— J J
j=0

and taking j = 0, we obtain

e e

Z<<e> (h")j(g”)Ej)ij =miy (e) (hg)e/.

Jj=0 J j=0 J
This shows that

(a")e =m;a’, (b")ezm,-b", (g”)ezm,-ge, (h") =m;h°.
In particular, m| =my =--- =mgy_1. A typical element in S9 has the form
s = diag(ywx(o), e, ywx(’l_l)),
where x € Ly. Then a similar computation as above shows that
o:l_lsozg = diag(ywA?x(O)‘/’, ywA}x(l)d’, ceey ywA”ll_lx(d_l)d’) es?.

We deduce that, for 1 <i <d and x € L(d) = L._ (note that ¥’ =1 as n’ =2),

(Az NG 1)¢)(1) Az ()¢
Taking x = ¢/, we obtain similarly as before,
1= i (1 L .
LIEQ TR =GEQ TR @
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with some ¢; € K. Now choosing j =0 and j = e — 1, we obtain
(aa)e—l =niae_1, (bcr)e—l =n,~be_1,
(ga)efl =nige_1, (ha)efl =nihe_1,

where n; = Kjé_il Again,ny=np=---=ng_1.Setz = ’:ll_ll Then

a’ =za, b° =zb, g’ =zg, h® =zh.

Since one of the coefficients a, b, ... is 1, we conclude that z =1 and a, b, g, h € Kj.
This shows for j < m/' that

(E@))" = E@). 3)

Finally, al_lslaz =S!. For s € L(1), there exists s’ € L(1) such that Oll_lTSOQ =
Ts’. Computing the left-hand side and comparing both sides, we see

a’bi LOO? =L(1), 1<i<d.
Since L(1) = L., we deduce from Lemma 2.4 that a?bi_l = E(¢)°mod K* forall i.
This implies (as a’b; = E(£)¢ mod K *)
aw=ar=---=dag_1, bp=by=---=by_1 modK*.
Letz = a‘fbo =kE ()¢ with k € K. Then
al_lTotz = Tdiag(z(o), e z<d7])),
which shows that
Z((171) _ w¢*1a(’)'¢bd_1.
Also,
_ _ -1 _ -1
7@ = y? l(ag )‘pagbd_l =w? l(a(])/ )¢agb0
=w? Y (al Y E@)* modk*.
We know by Step 2 and as ' = 1 that E(¢) = w'!™? (aé_”)"j mod K *. Using (3), this
yields
EQ) '=9"D=E@) modK*.

But then E(¢) € K, and the assertion of step 3 follows.

Step 4. The assertion of the lemma holds.

By Step 3 we have E(¢) € K, which implies that Af) € K for 0 <i < d. Hence,
we may adjust o« by some element of M such that we even can assume that Ag =1.

Since

o s = diag(1, A, ..., A5 ') €8,
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we deduce from Lemma 3.5 that all Af) =1 for all i, i.e., @ = ap. Then for s =
diag(x(o), x® ) x@=Dy e 80 we obtain

al_lsoq = diag(x(o)d’, x(1)¢, e x(d_l)‘/’),
which in turn implies that the equation
xDé _ o)
must hold for all x € L(0) = L,. In particular,
a+b;=¢M =M =g 1 po¢,
which forces

a,be K. “)

Conversely, this condition implies by Lemma 7.1 that our equation x (V¢ = x¢(1)
holds even for x € L. Moreover, L(k)? = L(k) for all k. We have al_l Tay = Ts with

s € L(l)=L,. Also, (xl_thoz] = al_lToclocl_ltoq = Tal_ltals for t € L., which
implies L,s = L,. So, by Lemma 2.5,

seK.

We already have seen in step 3 that Otl_l Toy = T's leads to the equations
s©O = a?bo, e, s@=2 — ag_lbd_z, s@=Dy = ag¢bd_1w¢.
This shows (using b; = ai_(’)) that
w1 = O M _s(d—l)agﬂl—w _ sl+U+'--+ad_'b())/—1.
Therefore, the condition
wh! e glHot—to' [ y-1 (5)

is necessary for the existence of a diagonal autotopism of type ¢. However, we see
by Lemma 7.2 that conditions (4) and (5) are even sufficient for the existence of the
autotopism. The proof is complete. g

Summarizing Theorem 1, Proposition 4.1, and Lemmas 5.2, 7.2, and 7.3, we ob-
tain the following:

Proposition 7.4 Assume that m > n and use the notation of 2.1 and 3.1. Denote by

G the subgroup of diagonal autotopisms. Then M I G <Gy 1 G, | M| = (¢" —
1)2(61'" —1)/(qg —1),and |G : Go| =d. Moreover:

(a) Assume thatn > d > 1. Then Gy = G| and

Go/M ~ {¢ € Aut(L) |w?™" € KTt Lyl 9 =4 1 br, a,b e Ko).
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(b) Assume that n =d. Then [Gq : G1] divides n, and G1/M contains a subgroup
isomorphic to

{¢ € Aut(L) |w?™" e Kot Ll 00— 4 be,ab e Ko
Example 7.5 Assume that n =d < m. For ¢ € Aut(L), define a K-subspace of L by
Ly= {c elL] (cx¢)(1) =cDxDe ¢ L}.

Computations like the previous ones show that a necessary condition for the existence
of a diagonal or semidiagonal autotopism of type ¢ is that

Ly #0.

Suppose now that n =2, m =4, and Ly # 0. Computations show that a diagonal
autotopism of type ¢ exists iff w?~! € K7 and that a semidiagonal autotopism of
type ¢ exists iff w?t! € K79 In the special case K = GF(4), L = F = GF(16),
a computer calculation shows that Ly # 0 iff [¢p]| = 2. Also |w]| is divisible by 5.
Therefore, no diagonal autotopism of type ¢ exists. A semidiagonal autotopism of
type ¢ exists if and only if |w| = 5.

Final remarks (a) Assume the notation of Sect. 7. A complete treatment of the case
n =d, n <m, would require a characterization of the sets Ly for ¢ € Aut(L), where
L is defined as in the previous example. We do not have such a characterization.

(b) Let V be an m-dimensional vector space over a not necessarily finite field K.
Let o € Aut(K) be of order n, and let T be an irreducible, o -linear operator on V.
It is easy to see that S = Z;";OI KT still defines a semifield. Let F = Cgna KO(V)(T)
be a field (not merely a skew field), i.e., T be separable in the sense of [4]. Then
Theorem 1 is still true: by [4] the description of T is completely analogous as in the
case |K| < 0o, and it is not hard to see that all arguments of the proof of Theorem 1
carry over to our more general situation.
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