Kakeya-type sets in finite vector spaces
Swastik Kopparty
, Vsevolod F. Lev
, Shubhangi Saraf
and Madhu Sudan
DOI: 10.1007/s10801-011-0274-8
Abstract
For a finite vector space V and a nonnegative integer r\leq dim\thinspace V, we estimate the smallest possible size of a subset of V, containing a translate of every r-dimensional subspace. In particular, we show that if K\subseteq V is the smallest subset with this property, n denotes the dimension of V, and q is the size of the underlying field, then for r bounded and r< n\leq rq r - 1, we have | V\setminus K|= Θ ( nq n - r+1); this improves the previously known bounds | V\setminus K|= Ω ( q n - r+1) and | V\setminus K|= O( n 2 q n - r+1).
Pages: 337–355
Keywords: keywords Kakeya set; Kakeya problem; polynomial method; finite field
Full Text: PDF
References
1. Alon, N., Spencer, J.H.: The Probabilistic Method, 3rd edn. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Hoboken (2008). xviii+352 pp.
© 1992–2009 Journal of Algebraic Combinatorics
©
2012 FIZ Karlsruhe /
Zentralblatt MATH for the EMIS Electronic Edition