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Abstract For a finite vector space V and a nonnegative integer r ≤ dimV , we es-
timate the smallest possible size of a subset of V , containing a translate of every
r-dimensional subspace. In particular, we show that if K ⊆ V is the smallest subset
with this property, n denotes the dimension of V , and q is the size of the underly-
ing field, then for r bounded and r < n ≤ rqr−1, we have |V \ K| = Θ(nqn−r+1);
this improves the previously known bounds |V \ K| = Ω(qn−r+1) and |V \ K| =
O(n2qn−r+1).

Keywords Kakeya set · Kakeya problem · Polynomial method · Finite field

1 Introduction and summary of results

Given a finite vector space V and a nonnegative integer r ≤ dimV , we say that a
subset K ⊆ V is a Kakeya set of rank r if it contains a translate of every r-dimensional
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subspace of V ; that is, for every subspace L ≤ V with dimL = r , there exists a vector
v ∈ V such that v +L ⊆ K . The goal of this paper is to estimate the smallest possible
size of such a set as a function of the rank r , the dimension dimV , and the size q of
the underlying field.

For a prime power q , by Fq we denote the finite field of order q .
As shown by Ellenberg, Oberlin, and Tao [4, Proposition 4.16], if n ≥ 2 is an

integer, q a prime power, and K ⊆ F
n
q a Kakeya set of rank r ∈ [1, n − 1], then

|K| ≥ (
1 − q1−r

)(n
2)qn,

provided that q is sufficiently large as compared to n. Our lower bound presents an
improvement of this estimate.

Theorem 1 If n ≥ r ≥ 1 are integers, q a prime power, and K ⊆ F
n
q a Kakeya set of

rank r , then

|K| ≥
(

qr+1

qr + q − 1

)n

= (
1 + (q − 1)q−r

)−n
qn.

The proofs of Theorem 1 and most of other results, discussed in the introduction,
are postponed to subsequent sections.

We notice that Theorem 1 extends [3, Theorem 11], and indeed, the latter result
is a particular case of the former, obtained for r = 1. The proof of Theorem 1 uses
the polynomial method in the spirit of [3, 8], the major novelty introduced being that
in our present settings, we have to consider polynomials over the ring of rational
functions.

Using the inequality

(1 + x)−m ≥ 1 − mx, x ≥ 0, m ≥ 1,

one readily derives

Corollary 2 If n ≥ r ≥ 1 are integers, q a prime power, and K ⊆ F
n
q a Kakeya set of

rank r , then

|K| ≥ (
1 − n(q − 1)q−r

)
qn.

We remark that in the particular case r = n−1 a better estimate is known: namely,
[5, Theorem 5.1] shows that if n ≥ 3 is fixed and K ⊆ F

n
q is a Kakeya set of rank n−1,

then |K| ≥ qn − q2 + o(q2) as q → ∞.
To facilitate comparison between estimates, we introduce the following terminol-

ogy. Given two bounds B1 and B2 for the smallest size of a Kakeya set in F
n
q (which

are either both upper bounds or both lower bounds), we say that these bounds are
essentially equivalent in some range of n and q if there is a constant C such that for
all n and q in this range, we have

B1 ≤ CB2, B2 ≤ CB1,
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and also

qn − B1 ≤ C
(
qn − B2

)
, qn − B2 ≤ C

(
qn − B1

)
.

We will also say that the estimates, corresponding to these bounds, are essentially
equivalent.

With this convention, it is not difficult to verify that for every fixed ε > 0, the
estimates of Theorem 1 and Corollary 2 are essentially equivalent whenever n ≤
(1 − ε)qr−1. If n ≥ (1 + 1

q−1 ) qr−1, then the estimate of Corollary 2 becomes trivial.
The second, considerably larger in volume part of the paper, deals with the upper

bounds. We here give a number of different constructions. Some of them can be
regarded as refined and adjusted versions of previously known ones; other, to our
knowledge, did not appear in the literature, but have been “in the air” for a while.

We first present a Kakeya set construction geared toward large fields. It is based
on the “quadratic residue construction” due to Mockenhaupt and Tao [6] (with a
refinement by Dvir, see [8]), the “lifting technique” from [4], and the “tensor power
trick.” Our starting point is [8, Theorem 8], stating that if n ≥ 1 is an integer and q a
prime power, then there exists a rank 1 Kakeya set K ⊆ F

n
q such that

|K| ≤ 2−(n−1)qn + O
(
qn−1), (1)

with an absolute implicit constant. Indeed, the proof in [8] yields the explicit estimate

|K| ≤
{

q(
q+1

2 )n−1 + qn−1 if q is odd,

(q − 1)(
q
2 )n−1 + qn−1 if q is even.

(2)

This can be used to construct Kakeya sets of rank higher than 1 using an observation
of Ellenberg, Oberlin, and Tao.

Lemma 3 ([4, Remark 4.19]) Let n ≥ r ≥ 1 be integers, and F a field. Suppose that
K1 is a rank 1 Kakeya set in the vector space F

n−(r−1), considered as a subspace of
F

n, and let K := K1 ∪ (Fn \ F
n−(r−1)). Then K is a Kakeya set of rank r in F

n.

Combining (2) with n = 2 and Lemma 3 with n = r + 1, we conclude that for
every r ≥ 1, there exists a Kakeya set K ⊆ F

r+1
q of rank r such that

|K| ≤
⎧
⎨

⎩

(1 − q−3
2qr )qr+1 if q is odd,

(1 − q−1
2qr )qr+1 if q is even.

(3)

For q = 3, this estimate is vacuous. However, replacing in this case (2) with the fact
that the vector space F

2
3 contains a seven-element rank 1 Kakeya set, we find a Kakeya

set K ⊆ F
r+1
3 of rank r with

|K| ≤ 3r+1 − 2 =
(

1 − 3 − (5/3)

2 · 3r

)
3r+1. (4)

Since the product of Kakeya sets of rank r is a Kakeya set of rank r in the product
space, from (3) and (4) we derive
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Theorem 4 Let n ≥ r ≥ 1 be integers, and q a prime power, and write

δq :=

⎧
⎪⎨

⎪⎩

3 if q is odd and q ≥ 5,

1 if q is even,
5
3 if q = 3.

There exists a Kakeya set K ⊆ F
n
q of rank r such that

|K| ≤
(

1 − q − δq

2qr

)	 n
r+1 


qn.

We notice that if n, r, q , and δq are as in Theorem 4 and n > r , then

(
1 − q − δq

2qr

)	 n
r+1 


≤ 1 − Ω
(
q−(r−1)

)

and that the inequality

(1 − x)m ≤ 1 − mx + (mx)2, 0 ≤ x ≤ 1, m ≥ 1,

shows that if r < n ≤ rqr−1, then indeed

(
1 − q − δq

2qr

)	 n
r+1 


≤ 1 − Ω

(
n

r
q−(r−1)

)
,

with absolute implicit constants. Therefore, we have

Corollary 5 Let n > r ≥ 1 be integers, and q a prime power. There exists a Kakeya
set K ⊆ F

n
q of rank r such that

|K| ≤ qn − Ω
(
qn−(r−1)

);
moreover, if n ≤ rqr−1, then in fact

|K| ≤ qn − Ω

(
n

r
qn−(r−1)

)

(with absolute implicit constants).

We remark that Corollaries 2 and 5 give nearly matching bounds on the smallest
possible size of a Kakeya set of rank r in F

n
q in the case where r is bounded, q grows,

and the dimension n does not grow “too fast.”
In contrast, for q bounded and n growing, neither (1) nor Theorem 4 give satisfac-

tory upper bounds. Specifically, the O-term in (1) do not even allow for constructing
Kakeya sets of size o(qn), whereas the estimate of Theorem 4 is nontrivial, but rela-
tively weak. Addressing this situation first in the case r = 1, we develop further the
idea behind the proof of [8, Theorem 8] to show that the O-term just mentioned can
be well controlled, making the result nontrivial in the regime under consideration.
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Theorem 6 Let n ≥ 1 be an integer, and q a prime power. There exists a rank 1
Kakeya set K ⊆ F

n
q with

|K| <

⎧
⎪⎪⎨

⎪⎪⎩

2(1 + 1
q−1 )(

q+1
2 )n if q is odd,

3
2 (1 + 1

q−1 )(
2q+1

3 )n if q is an even power of 2,

3
2 (

2(q+√
q+1)

3 )n if q is an odd power of 2.

Theorem 6 is to be compared against the case r = 1 of Theorem 1 showing that if
K ⊆ F

n
q is a rank 1 Kakeya set, then |K| ≥ (q2/(2q − 1))n.

For several small values of q , the estimate of Theorem 6 can be improved using
a combination of the “missing digit construction” and the “random rotation trick”
of which we learned from Terry Tao, who, in turn, refers to Imre Ruzsa (personal
communication in both cases).

For a field F, by F
× we denote the set of nonzero elements of F.

The missing digit construction by itself gives a very clean but rather weak estimate.

Theorem 7 Let n ≥ 1 be an integer, and q a prime power, and suppose that
{e1, . . . , en} is a linear basis of F

n
q . Let

A := {
ε1e1 + · · · + εnen : ε1, . . . , εn ∈ F

×
q

}

and

B := {
ε1e1 + · · · + εnen : ε1, . . . , εn ∈ {0,1}}.

Then K := A ∪ B is a rank 1 Kakeya set in F
n
q with

|K| = (q − 1)n + 2n − 1.

Using the random rotation trick, we boost Theorem 7 to

Theorem 8 Let n ≥ 1 be an integer, and q ≥ 3 a prime power. There exists a rank 1
Kakeya set K ⊆ F

n
q such that

|K| <
(

q

22/q

)n+O(
√

n lnq/q)

(with an absolute implicit constant).

To compare Theorems 6 and 8, we notice that (q+1)/2 < 2−2/qq for every integer
q ≥ 4, that (2q +1)/3 < 2−2/qq for every integer q ≥ 5, and that 2(q +√

q +1)/3 <

2−2/qq for every integer q ≥ 14. Thus, for q fixed and n growing, Theorem 6 super-
sedes Theorem 8 except if q ∈ {3,4,8}. Indeed, the remark following the proof of
Proposition 19 (Sect. 3) shows that the value q = 8 can be removed from this list.

Finally, we return to constructions of Kakeya sets of rank r ≥ 2, with the case
where q is bounded and n grows in mind. As remarked above, for r large, the bound
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of Theorem 4 (and consequently, that of Corollary 5) is rather weak. The best possible
construction we can give in this regime does not take linearity into account and is just
a universal set construction where, following [2], we say that a subset of a group is
k-universal if it contains a translate of every k-element subset of the group. As shown
in [2], every finite abelian group G possesses a k-universal subset of size at most
8k−1k|G|1−1/k . In our present context the group under consideration is the additive
group of the vector space F

n
q , in which case we were able to give a particularly simple

construction of universal sets and refine slightly the bound just mentioned.

Lemma 9 Let q be a prime power, and n, k ≥ 1 integers satisfying k ≤ qn. There
exists a set U ⊆ F

n
q with

|U | = (
1 − (

1 − q−	n/k
)k)
qn

such that U contains a translate of every k-element subset of F
n
q .

As an immediate consequence, we have

Theorem 10 Let n ≥ r ≥ 1 be integers, and q a prime power. There exists a Kakeya
set K ⊆ F

n
q of rank r such that

|K| ≤ (
1 − (

1 − q−	n/qr
)qr )
qn.

Using the estimates 	n/qr
 > n/qr − 1 and (1 − x)m ≥ 1 − mx (applied with
x = q−	n/qr
 and m = qr ), we obtain

Corollary 11 Let n ≥ r ≥ 1 be integers, and q a prime power. There exists a Kakeya
set K ⊆ F

n
q of rank r such that

|K| < qn(1−q−r )+r+1.

It is not difficult to verify that Corollary 11 supersedes Corollary 5 for n ≥ (r +
2)qr and that for n growing, Theorem 10 supersedes Theorem 4 if r is sufficiently
large as compared to q (roughly, r > Cq/ logq with a suitable constant C).

A slightly more precise version of Corollary 11 is that there exists a Kakeya set
K ⊆ F

n
q of rank r with

|K| ≤ qn−	n/qr
+r ;
this is essentially equivalent to Theorem 10, provided that n ≥ (r + 1)qr . (On the
other hand, Theorem 10 becomes trivial if n < qr .)

The remainder of the paper is mostly devoted to the proofs of Theorems 1, 6, 7,
and 8, and Lemma 9. For the convenience of the reader and self-completeness, we
also prove (a slightly generalized version of) Lemma 3 in the Appendix. Section 6
contains a short summary and concluding remarks.
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2 Proof of Theorem 1

As a preparation for the proof of Theorem 1, we briefly review some basic notions and
results related to the polynomial method; the reader is referred to [3] for an in-depth
treatment and proofs.

For the rest of this section, we use multidimensional formal variables, which are to
be understood just as n-tuples of “regular” formal variables with a suitable n. Thus,
for instance, if n is a positive integer and F is a field, we can write X = (X1, . . . ,Xn)

and P ∈ F[X], meaning that P is a polynomial in the n variables X1, . . . ,Xn over F.
By N0 we denote the set of nonnegative integers, and for X as above and an n-tuple
i = (i1, . . . , in) ∈ N

n
0, we let ‖i‖ := i1 + · · · + in and Xi := X

i1
1 · · ·Xin

n .
Let F be a field, n ≥ 1 an integer, and X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn)

formal variables. To every polynomial P in n variables over F and every n-tuple
i ∈ N

n
0, there corresponds a uniquely defined polynomial P (i) over F in n variables

such that

P(X + Y) =
∑

i∈N
n
0

P (i)(Y )Xi.

The polynomial P (i) is called the Hasse derivative of P of order i. Notice that P (0) =
P (which follows, for instance, by letting X = (0, . . . ,0)), and if ‖i‖ > degP , then
P (i) = 0. Also, it is easy to check that if PH denotes the homogeneous part of P

(meaning that PH is a homogeneous polynomial such that deg(P − PH ) < degP )
and if (P (i))H denotes the homogeneous part of P (i), then

(PH )(i) =
{

(P (i))H if degP (i) = degP − ‖i‖,
0 if degP (i) < degP − ‖i‖.

A polynomial P in n variables over a field F is said to vanish at a point a ∈ F
n

with multiplicity m if P (i)(a) = 0 for each i ∈ N
n
0 with ‖i‖ < m, whereas there exists

i ∈ N
n
0 with ‖i‖ = m such that P (i)(a) 
= 0. In this case, a is also said to be a zero of

P of multiplicity m. We denote the multiplicity of zero of a nonzero polynomial P at
a by μ(P,a). It is not difficult to see that the multiplicity μ(P,a) can be alternatively
defined as the largest integer m with the property that

P(X + a) =
∑

i∈N
n
0 : ‖i‖≥m

c(i, a)Xi; c(i, a) ∈ F.

Lemma 12 ([3, Lemma 5]) Let n ≥ 1 be an integer. If P is a nonzero polynomial in
n variables over the field F and a ∈ F

n, then for any i ∈ N
n
0, we have

μ
(
P (i), a

) ≥ μ(P,a) − ‖i‖.
Lemma 13 ([3, Proposition 10]) Let n,m ≥ 1 and k ≥ 0 be integers, and F a field.
If a finite set S ⊆ F

n satisfies
(
m+n−1

n

) |S| <
(
n+k
n

)
, then there is a nonzero polyno-

mial over F in n variables of degree at most k, vanishing at every point of S with
multiplicity at least m.

Yet another lemma we need is a direct corollary of [3, Proposition 6].
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Lemma 14 Let n, r ≥ 1 be integers, and P a nonzero polynomial in n variables over
the field F, and suppose that b, d1, . . . , dr ∈ F

n. Then for any t1, . . . , tr ∈ F, we have

μ
(
P(b + T1d1 + · · · + Trdr), (t1, . . . , tr )

) ≥ μ(P,b + t1d1 + · · · + trdr ),

where P(b + T1d1 + · · · + Trdr) is a polynomial in the formal variables T1, . . . , Tr .

The multiplicity Schwartz–Zippel lemma is as follows.

Lemma 15 ([3, Lemma 8]) Let n ≥ 1 be an integer, P a nonzero polynomial in n

variables over a field F, and S ⊆ F a finite set. Then
∑

z∈Sn

μ(P, z) ≤ degP · |S|n−1.

Corollary 16 Let n ≥ 1 be an integer, P a nonzero polynomial in n variables over a
field F, and S ⊆ F a finite set. If P vanishes at every point of Sn with multiplicity at
least m, then degP ≥ m|S|.

We are now ready to prove Theorem 1.

Proof of Theorem 1 Assuming that m and k are positive integers with

k < qr

⌈
qm − k

q − 1

⌉
(5)

(no typo: k enters both sides!), we show first that
(

m + n − 1

n

)
|K| ≥

(
n + k

n

)
(6)

and then optimize by m and k.
Suppose for a contradiction that (6) fails; thus, by Lemma 13, there exists a

nonzero polynomial P over Fq of degree at most k in n variables, vanishing at every
point of K with multiplicity at least m.

Write l := � qm−k
q−1 � and fix i = (i1, . . . , in) ∈ N

n
0 satisfying w := ‖i‖ < l. Let Q :=

P (i), the ith Hasse derivative of P .
Since K is a Kakeya set of rank r , for every d1, . . . , dr ∈ F

n
q , there exists b ∈ F

n
q

such that b + t1d1 + · · · + trdr ∈ K for all t1, . . . , tk ∈ Fq ; hence,

μ(P,b + t1d1 + · · · + trdr ) ≥ m,

and therefore, by Lemma 12,

μ(Q,b + t1d1 + · · · + trdr ) ≥ m − w

whenever t1, . . . , tr ∈ Fq . By Lemma 14, we have

μ(Q,b + t1d1 + · · · + trdr ) ≤ μ
(
Q(b + T1d1 + · · · + Trdr), (t1, . . . , tr )

)
,
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where Q(b + T1d1 + · · · + Trdr) is considered as a polynomial in the variables
T1, . . . , Tr . Thus, for every d1, . . . , dr ∈ F

n
q , there exists b ∈ F

n
q such that Q(b +

T1d1 +· · ·+Trdr) vanishes with multiplicity at least m−w at each point (t1, . . . , tr ) ∈
F

r
q . Compared with

degQ(b + T1d1 + · · · + Trdr) ≤ degQ ≤ k − w < q(m − w)

(as it follows from w < l), in view of Corollary 16, this shows that Q(b + T1d1 +
· · · + Trdr) is the zero polynomial.

Let PH and QH denote the homogeneous parts of the polynomials P and Q,
respectively, so that Q(b +T1d1 +· · ·+Trdr) = 0 implies QH (T1d1 +· · ·+Trdr) =
0. Thus, (PH )(i)(T1d1 + · · · + Trdr) = 0 for all d1, . . . , dr ∈ F

n
q . We interpret this

saying that (PH )(i), considered as a polynomial in n variables over the field of rational
functions Fq(T1, . . . , Tr ), vanishes at every point of the set

{
T1d1 + · · · + Trdr : d1, . . . , dr ∈ F

n
q

} = Sn,

where

S := {α1T1 + · · · + αrTr : α1, . . . , αr ∈ Fq}.
This shows that all Hasse derivatives of PH of order, smaller than l, vanish on Sn;

in other words, PH vanishes with multiplicity at least l at every point of Sn. Since,
on the other hand, by (5) we have

degPH = degP ≤ k < qr l = |S|l,
from Corollary 16 we conclude that PH is the zero polynomial, which is wrong as
the homogeneous part of a nonzero polynomial is nonzero.

Thus, (6) is established. Rewriting it as

|K| ≥ (k + 1)(k + 2) · · · (k + n)

m(m + 1) · · · (m + n − 1)
,

to optimize we choose k = Nqr+1 − 1 and m = (qr + q − 1)N , where N is a posi-
tive integer. With this choice, inequality (5) is satisfied for any values of N , and the
assertion of Theorem 1 follows from the observation that the limit of the right-hand
side as N → ∞ is (qr+1/(qr + q − 1))n. �

3 Proof of Theorem 6

For a field F, a function f : F → F, and an element t ∈ F, we write

If (t) := {
f (x) + tx : x ∈ F

}
.

Our proof of Theorem 6 relies on the following lemma, a provisional form of
which is implicitly contained in [8].
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Lemma 17 Let n ≥ 1 be an integer, F a finite field, and f : F → F a nonlinear
function. There exists a rank 1 Kakeya set K ⊆ F

n with

|K| =
∑

t∈F

|If (t)|n − 1

|If (t)| − 1
.

Proof Let

K := {
(x1, . . . , xj , t,0, . . . ,0) : 0 ≤ j ≤ n − 1, t ∈ F, x1, . . . , xj ∈ If (t)

}
.

Since f is nonlinear, we have |If (t)| > 1 for each t ∈ F, and it follows that

|K| =
n−1∑

j=0

∑

t∈F

∣∣If (t)
∣∣j =

∑

t∈F

|If (t)|n − 1

|If (t)| − 1
.

To show that K is a rank 1 Kakeya set, we prove that it contains a line in every
direction d = (d1, . . . , dn) ∈ F

n \ {0}. Without loss of generality we assume that, for
some j ∈ [1, n − 1], we have dj+1 = 1 and dj+2 = · · · = dn = 0, and we let

b := (
f (d1), . . . , f (dj ),0, . . . ,0

)
.

For every t ∈ F, we have then

b + td = (
f (d1) + td1, . . . , f (dj ) + tdj , t,0, . . . ,0

) ∈ K,

completing the proof. �

The assertion of Theorem 6 for q odd follows immediately from Lemma 17 upon
choosing F := Fq and f (x) := x2, and observing that then |If (t)| = (q + 1)/2 for
each t ∈ F in view of

x2 + tx = (x + t/2)2 − t2/4.

In the case of q even, the assertion follows easily by combining Lemma 17 with the
following two propositions.

Proposition 18 (cf. [9]) Suppose that q is an even power of 2, and let f (x) := x3

(x ∈ Fq). Then for every t ∈ Fq , we have |If (t)| ≤ (2q + 1)/3.

Proposition 19 Suppose that q is an odd power of 2 and let f (x) := xq−2 + x2

(x ∈ Fq). Then for every t ∈ Fq , we have |If (t)| ≤ 2(q + √
q + 1)/3.

To complete the proof of Theorem 6, it remains to prove Propositions 18 and 19.
Indeed, Proposition 18 follows immediately from the main result of [9]; however, we
include below a self-contained proof since it also serves as a simplified model of the
more involved proof of Proposition 19.

We need the following well-known fact.
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Lemma 20 Suppose that q is a power of 2, and let Tr denote the trace function from
the field Fq to its two-element subfield. For α,β, γ ∈ Fq with α 
= 0, the number of
solutions of the equation αx2 + βx + γ = 0 in the variable x ∈ Fq is

⎧
⎪⎨

⎪⎩

1 if β = 0,

0 if β 
= 0 and Tr(αγ /β2) = 1,

2 if β 
= 0 and Tr(αγ /β2) = 0.

We can now prove Proposition 18.

Proof of Proposition 18 The assumption that q is an even power of 2 implies that
q − 1 is divisible by 3. Consequently, Fq contains (q − 1)/3 + 1 < (2q + 1)/3 cubes,
and we assume below that t 
= 0.

For x, y ∈ Fq , we write x ∼ y if x3 + tx = y3 + ty. Clearly, this defines an equiv-
alence relation on Fq , and |If (t)| is just the number of equivalence classes. Since the
equation x3 + tx = 0 has exactly two solutions, which are 0 and

√
t , the set {0,

√
t}

is an equivalence class. Fix now x /∈ {0,
√

t} and consider the equivalence class of x.
For x ∼ y to hold, it is necessary and sufficient that either y2 + xy + x2 = t or x = y,
and these two conditions cannot hold simultaneously in view of x 
= √

t . Hence, with
Tr defined as in Lemma 20, and using the assertion of the lemma, the number of
elements in the equivalence class of x is

{
1 if Tr((x2 + t)/x2) = 1,

3 if Tr((x2 + t)/x2) = 0.

As x runs over all elements of Fq \ {0,
√

t}, the expression (x2 + t)/x2 runs over all
elements of Fq \ {0,1}. Since q is an even power of 2, we have Tr(1) = Tr(0) = 0;
thus, there are q/2 − 2 values of x /∈ {0,

√
t} with Tr((x2 + t)/x2) = 0.

To summarize, q/2−2 elements of Fq are contained in three-element equivalence
classes, the elements 0 and

√
t form a two-element class, and the remaining q/2

elements lie in one-element classes. It follows that the number of classes is

q/2 − 2

3
+ 1 + q/2 = 2q + 1

3
. �

We now turn to the proof of Proposition 19.

Proof of Proposition 19 We define the equivalence relation ∼ and the trace function
Tr on Fq as in the proof of Proposition 18. Notice that the assumption that q is an odd
power of 2 implies that q−1 is not divisible by 3, whence the cube function x �→ x3 is
a bijection of Fq onto itself. Furthermore, we have xq−2 = x−1 for x ∈ F

×
q , implying

If (t) = {
x−1 + x2 + tx : x ∈ F

×
q

} ∪ {0}.
Suppose first that t = 0, in which case

If (0) = {
x−1 + x2 : x ∈ F

×
q

}
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in view of 1−1 + 12 = 0. A simple computation shows that x ∼ y with x, y ∈ F
×
q ,

x 
= y, holds if and only if 1/(xy) = x + y; that is, xy2 + x2y + 1 = 0. For x ∈ F
×
q

fixed, this equation in y has, by Lemma 20, two (nonzero) solutions if Tr(1/x3) = 0,
and no solutions if Tr(1/x3) = 1. It follows that each x ∈ F

×
q contains either three

or one nonzero element in its equivalence class, according to whether Tr(1/x3) =
0 or Tr(1/x3) = 1. By a remark at the beginning of the proof, as x runs over all
elements of F

×
q , so does 1/x3. Hence, there are exactly q/2 − 1 of those x ∈ F

×
q with

Tr(1/x3) = 0, and q/2 of those x ∈ F
×
q with Tr(1/x3) = 1. Consequently, |If (0)|,

which is the number of equivalence classes, is equal to

q/2 − 1

3
+ q/2 = 2q − 1

3
.

For the rest of the proof, we assume that t 
= 0.
The equation x−1 +x2 + tx = t−1 is easily seen to have the solution set {t,1/

√
t},

which, therefore, is an equivalence class consisting of two elements if t 
= 1 or just
one element if t = 1. Fix x ∈ F

×
q \ {t,1/

√
t}. For y ∈ F

×
q , y 
= x, we have x ∼ y if

and only if 1/(xy) = x + y + t ; equivalently, xy2 + x(x + t)y + 1 = 0. This equation
has two solutions (distinct from x and 0) if Tr(1/x(x + t)2) = 0 and no solutions
if Tr(1/x(x + t)2) = 1. In the former case the equivalence class of x contains three
nonzero elements, and, consequently, if we let

N := #
{
x ∈ F

×
q \ {

t,1/
√

t
} : Tr

(
1/

(
x(x + t)2)) = 0

}
,

then

∣∣If (t)
∣∣ ≤

{
q − 2

3 N if t = 1,

q − 2
3 N − 1 if t 
= 1.

(7)

To estimate N , we notice that

1

x(x + t)2
= 1

t2x
+ 1

t2(x + t)
+ 1

t (x + t)2

and that

Tr

(
1

t (x + t)2

)
= Tr

(
1√

t(x + t)

)
,

implying

Tr

(
1

x(x + t)2

)
= Tr

(
1

t2x
+

(
1

t2
+ 1√

t

)
1

x + t

)

= Tr

(
x/

√
t + 1/t

x(x + t)

)
.

Thus, if t = 1, then

Tr

(
1

x(x + t)2

)
= Tr

(
1

x

)
,
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showing that

N = #
{
x ∈ Fq \ {0,1} : Tr(1/x) = 0

} = q/2 − 1

(as the assumption that q is an odd power of 2 implies Tr(1) = 1), and hence

∣∣If (1)
∣∣ ≤ q − 2

3
(q/2 − 1) = 2q + 2

3

by (7).
Finally, suppose that t /∈ {0,1}. For brevity, we write

R(x) := x/
√

t + 1/t

x(x + t)
,

and let ψ denote the additive character of the field Fq , defined by

ψ(x) = (−1)Tr(x), x ∈ Fq .

Since R(1/
√

t) = 0, we have

N = 1

2

∑

x∈Fq\{0,t,1/
√

t}

(
1 + ψ

(
R(x)

))

= 1

2

∑

x∈Fq\{0,t}
ψ

(
R(x)

) + q

2
− 2.

Using Weil’s bound (as laid out, for instance, in [7, Theorem 2]), we get

N ≥ q

2
− 2 − 1

2

(
2
√

q + 1
) = q

2
− √

q − 5

2
.

Now (7) gives

∣∣If (t)
∣∣ ≤ q − 2

3

(
(q/2) − √

q − (5/2)
) − 1 = 2(q + √

q + 1)

3
,

which completes the proof. �

We remark that for any particular prime power q , the estimates of Propositions 18
and 19 can (potentially) be improved by computing the exact values of the quantities
|If (t)|. Say, a direct inspection shows that for q = 8 and f (x) := x6 + x2, one has
|If (t)| ≤ 6 for each t ∈ F8; consequently, for every integer n ≥ 1, the vector space
F

n
8 possesses a rank 1 Kakeya set of size smaller than 8

5 · 6n.
A natural question arising in connection with our proof of Theorem 6 is whether

and to which extent the result can be improved by choosing “better” functions f in
Propositions 18 and 19 and in the application of Lemma 20 in the case of q odd. We
conclude this section showing that we have almost reached the limits of the method.
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Lemma 21 For every prime power q and function f : Fq → Fq , there exists an ele-
ment t ∈ Fq with

∣
∣If (t)

∣
∣ > q/2.

Proof For x, y, t ∈ Fq , we write x
t∼ y if f (x) + tx = f (y) + ty; equivalently, if

either x = y, or x 
= y and (f (x) − f (y))/(x − y) = −t . It follows from the first

form of this definition that
t∼ is an equivalence relation on Fq and |If (t)| is the

number of equivalence classes, and from the second form that for every pair (x, y)

with x 
= y, there exists a unique t ∈ Fq with x
t∼ y.

For each t ∈ Fq , consider the graph Γt on the vertex set Fq in which two vertices

x 
= y are adjacent if and only if x
t∼ y. By the remark just made, every edge of the

complete graph on the vertex set Fq belongs to exactly one graph Γt . Consequently,
there exists t ∈ Fq such that the number of edges of Γt , which we denote by e(Γt ),
does not exceed q−1

(
q
2

) = (q − 1)/2. By the construction, the graph Γt is a disjoint
union of cliques; let k denote the number, and m1, . . . ,mk the sizes of these cliques.
Thus, we have

m1 + · · · + mk = q and
∣∣If (t)

∣∣ = k,

and it remains to show that k > q/2. We distinguish two cases.
If q is even, then, using convexity, we get

q

2
− 1 ≥ e(Γt ) =

(
m1

2

)
+ · · · +

(
mk

2

)
≥ k

(
q/k

2

)
= 1

2
q

(
q

k
− 1

)
,

whence

q − 1 >
q2

2k
,

leading to the desired bound.
If q is odd, we let

s := #
{
i ∈ [1, k] : mi = 1

}
and l := #

{
i ∈ [1, k] : mi ≥ 2

}
,

so that s + l = k and

s + 2l ≤ q. (8)

Then

q − 1

2
≥ e(Γt ) =

∑

i∈[1,k] : mi≥2

(
mi

2

)
≥ l

(
(q − s)/ l

2

)

= 1

2
(q − s)

(
q − s

l
− 1

)
= 1

2l
(q − s)(q − k).

If we had k ≤ q/2, this would yield

q

2
>

q − 1

2
≥ 1

2l
(q − s) · q

2
,

contradicting (8). �



J Algebr Comb (2011) 34:337–355 351

4 Proof of Theorems 7 and 8

Proof of Theorem 7 Given a vector d = ε1e1 + · · · + εnen with ε1, . . . , εn ∈ Fq , let

b :=
∑

i∈[1,n] : εi=0

ei .

Thus, b ∈ B , and it is readily verified that for t ∈ F
×
q , we have b + td ∈ A. Therefore,

the line through b in the direction d is entirely contained in K .
The assertion on the size of K follows from A ∩ B = {e1 + · · · + en}. �

Proof of Theorem 8 We notice that the assertion is trivial if n = O(q(lnq)3), as in
this case for a sufficiently large constant C, we have

(
q

22/q

)n+C
√

n lnq/q

> qn;

consequently, we assume

n > 32q(lnq)3 (9)

for the rest of the proof.
Fix a linear basis {e1, . . . , en} ⊆ F

n
q and, as in Theorem 7, let

A := {
ε1e1 + · · · + εnen : ε1, . . . , εn ∈ F

×
q

}

and

B := {
ε1e1 + · · · + εnen : ε1, . . . , εn ∈ {0,1}}.

Given a vector v = ε1e1 + · · · + εnen with ε1, . . . , εn ∈ Fq and a scalar ε ∈ Fq , let
νε(v) denote the number of those indices i ∈ [1, n] with εi = ε. Set δ := 2

√
lnq and

define

D0 := {
d ∈ F

n
q : νε(d) > n/q − δ(n/q)1/2 for all ε ∈ Fq

}

and

A0 := {
a ∈ A : ν1(a) > 2n/q − 2δ(n/q)1/2}.

Suppose that a vector v ∈ F
r
q is chosen at random, with equal probability for each

vector to be chosen. For each fixed ε ∈ Fq , the quantity νε(v) is then a random vari-
able, distributed binomially with the parameters n and 1/q . As a result, using standard
estimates for the binomial tail (as, for instance, [1, Theorem A.1.13]), we get

P
(
νε(v) ≤ n/q − δ(nq)1/2) ≤ e−δ2(n/q)/(2n/q) = 1

q2
.
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Consequently, the probability of a vector, randomly drawn from F
n
q , not to belong to

D0, is at most 1/q , for which reason we call the elements of D0 popular directions.
If d = ε1e1 +· · ·+ εnen ∈ D0, then, letting b := ∑

i∈[1,n] : εi=0 ei , for each t ∈ F
×
q ,

we have

ν1(b + td) = ν0(d) + νt−1(d) > 2n/q − 2δ(n/q)1/2,

whence b + td ∈ A0. Thus, the set K0 := B ∪ A0 contains a line in every popular
direction.

To estimate the size of K0, we notice that, letting N := 	2n/q − 2δ(n/q)1/2
 + 1,
we have

|A0| =
n∑

j=N

(
n

j

)
(q − 2)n−j .

Assumption (9) implies that the summands in the right-hand side decay as j grows,
whence

|A0| ≤ n

(
n

N

)
(q − 2)n−N .

Consequently, writing

H(x) := x ln(1/x) + (1 − x) ln
(
1/(1 − x)

)
, x ∈ (0,1),

and using a well-known estimate for the binomial coefficients, we get

|A0| < n exp
(
nH(N/n) + (n − N) ln(q − 2)

)
.

Now, in view of (9), we have

1

q
≤ N

n
≤ 2

q
≤ 1 − 1

q
,

and therefore, since H(x) is concave and symmetric around the point x = 1/2, using
(9) once again, from the mean value theorem we derive

H(N/n) − H(2/q) = O
(
(N/n − 2/q)H ′(1/q)

)

= O
(
(lnq/(nq))1/2 H ′(1/q)

)

= O
(
(lnq)3/2/(nq)1/2).

Hence,

nH(N/n) + (n − N) ln(q − 2)

= nH(2/q) + n(1 − 2/q) ln(q − 2) + O
(
(n/q)1/2(lnq)3/2)

= n

(
lnq − 2

q
ln 2

)
+ O

(
(n/q)1/2(lnq)3/2),
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implying

|A0| <
(

q

22/q

)n

exp
(
O

(
(n/q)1/2(lnq)3/2)).

Since q/22/q > 2 for q ≥ 3, we conclude that

|K0| ≤ |A0| + |B| <
(

q

22/q

)n

exp
(
O

(
(n/q)1/2(lnq)3/2)) =

(
q

22/q

)n+O(
√

n lnq/q)

.

We now use the random rotation trick to replace K0 with a slightly larger set K

containing lines in all (not only popular) directions. To this end, we choose at random
linear automorphisms T1, . . . , Tn of the vector space F

n
q and set

K := T1(K0) ∪ · · · ∪ Tn(K0).

Thus, K contains a line in every direction from the set

D := T1(D0) ∪ · · · ∪ Tn(D0).

Choosing a vector d ∈ F
n
q \ {0} at random, for each fixed j ∈ [1, n], the probability

that d /∈ Tj (D0) is at most 1/q , whence the probability that d /∈ D is at most q−n.
Hence, the probability that D 
= F

n
q \ {0} is smaller than 1, showing that T1, . . . , Tn

can be instantiated so that K is a rank 1 Kakeya set. It remains to notice that |K| ≤
n|K0|. �

5 Proof of Lemma 9

If k > n, then the assertion of the lemma is trivial; suppose, therefore, that k ≤ n,
and let then m := 	n/k
. Fix a decomposition F

n
q = V0 ⊕ V1 ⊕ · · · ⊕ Vk , where

V0,V1, . . . , Vk ≤ F
n
q are subspaces with dimVi = m for i = 1, . . . , k, and for each

i ∈ [0, k], let πi denote the projection of F
n
q onto Vi along the remainder of the direct

sum; thus, v = π0(v) + π1(v) + · · · + πk(v) for every vector v ∈ F
n
q . Finally, let

U := {
u ∈ F

n
q : πi(u) = 0 for at least one index 1 ≤ i ≤ k

}
.

A simple computation confirms that the size of U is as claimed. To see why U

contains a translate of every k-element subset of F
n
q , given such a subset {a1, . . . , ak},

we let b := −π1(a1) − · · · − πk(ak) and observe that, for each i ∈ [1, k],

πi(b + ai) = πi(b) + πi(ai) = 0,

whence b + ai ∈ U . �
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6 Conclusion

For a vector space V and nonnegative integer r ≤ dimV , we defined Kakeya sets
of rank r in V as those subsets of V , containing a translate of every r-dimensional
subspace. In the case where V is finite, we established a lower bound and a number
of upper bounds for the smallest possible size of such sets. Our bounds are close to
best possible in the case where r is bounded and the dimension dimV does not grow
“too fast.” They are reasonably tight if r = 1 and dimV grows, particularly if q is odd
and not “too small.” In the case where dimV grows and r ≥ 2, there is no reason to
believe our bounds to be sharp; indeed, for r � q/ logq , our best upper bound results
from a universal set construction which completely ignores linearity.

Of possible improvements and research directions, the following two seem of par-
ticular interest to us. First, it would be nice to beat the universal set construction in
the regime just mentioned (dimV grows and r ≥ 2) or to show that it produces an
essentially best possible bound. Even the case q = r = 2 seems nontrivial: we do not
know any construction of Kakeya sets of rank 2 in F

n
2 of size smaller than O(23n/4),

the bound supplied by 4-universal sets. The second direction stems from the fact that
the product of Kakeya sets of rank r is a Kakeya set of rank r in the product space.
It is not difficult to derive that, with κ

(n)
q (r) denoting the smallest possible size of a

Kakeya set of rank r in F
n
q , the limit limn→∞ 1

n
lnκ

(n)
q (r) exists for any fixed q and r .

It would be very interesting to find this limit explicitly, even for just one particular
pair (q, r) 
= (2,1). Arguably, most intriguing is the first nontrivial case q = 3, r = 1,
due to the fact that lines in F

r
3 are three-term arithmetic progressions.

Appendix: Proof of the lifting lemma

We prove here the following lemma, which is a slight extension of Lemma 3.

Lemma 22 Let n ≥ r ≥ r1 ≥ 1 be integers, and F a field. Suppose that K1 is a
Kakeya set of rank r1 in F

n−(r−r1), considered as a subspace of F
n, and let K :=

K1 ∪ (Fn \ F
n−(r−r1)). Then K is a Kakeya set of rank r in F

n.

Proof Suppose that L ≤ F
n is a subspace with dimL = r . From

dimL + dim F
n−(r−r1) = dim

(
L + F

n−(r−r1)
) + dim

(
L ∩ F

n−(r−r1)
)

it follows that either L + F
n−(r−r1) is a proper subspace of F

n, or dim(L ∩
F

n−(r−r1)) = r1. Observing that if v /∈ L + F
n−(r−r1), then v + L is disjoint with

F
n−(r−r1), we conclude that, in either case, there is a translate of L, intersecting

F
n−(r−r1) by a subset of an r1-dimensional subspace. Hence, there is also a translate

of L, the intersection of which with F
n−(r−r1) is contained in K1. By the construction,

this translate of L is contained in K . �
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