ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

On Kazhdan-Lusztig cells in type B

Cédric Bonnafé

DOI: 10.1007/s10801-009-0183-2

Abstract

We prove that, for any choice of parameters, the Kazhdan-Lusztig cells of a Weyl group of type B are unions of combinatorial cells (defined using the domino insertion algorithm).

Pages: 53–82

Keywords: keywords Weyl group; type B; Kazhdan-Lusztig theory; unequal parameters; cells

Full Text: PDF

References

1. Bonnafé, C.: Two-sided cells in type B (asymptotic case). J. Algebra 304, 216-236 (2006)
2. Bonnafé, C.: Semicontinuity properties of Kazhdan-Lusztig cells. Preprint (2008), available at
3. Bonnafé, C., Geck, M., Iancu, L., Lam, T.: On domino insertion and Kazhdan-Lusztig cells in type Bn. Progress in Mathematics (2009, to appear), available at
4. Bonnafé, C., Iancu, L.: Left cells in type Bn with unequal parameters. Represent. Theory 7, 587-609 (2003)
5. Geck, M.: On the induction of Kazhdan-Lusztig cells. Bull. London Math. Soc. 35, 608-614 (2003)
6. Geck, M.: Computing Kazhdan-Lusztig cells for unequal. J. Algebra 281, 342-365 (2004)
7. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. London Math. Soc. Monographs, New Series, vol.
21. Oxford University Press, London (2000)
8. Kazhdan, D.A., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165-184 (1979)
9. Lam, T.: Growth diagrams, domino insertion, and sign-imbalance. J. Comb. Theory Ser. A. 107, 87- 115 (2004)
10. Lusztig, G.: Left cells in Weyl groups. In: Herb, R.L.R., Rosenberg, J. (eds.) Lie Group Representations I. Lecture Notes in Math., vol. 1024, pp. 99-111. Springer, Berlin (1983)
11. Lusztig, G.: Hecke Algebras with Unequal Parameters. CRM Monograph Series, vol.
18. American Mathematical Society, Providence (2003). 136 p.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition