ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

On m-regular systems on \Bbb H(5, q 2)

Antonio Cossidente1 and Tim Penttila2
1Università degli Studi della Basilicata Dipartimento di Matematica e Informatica Contrada Macchia Romana 85100 Potenza Italy
2Colorado State University Department of Mathematics Fort Collins CO 80523-1874 USA

DOI: 10.1007/s10801-008-0143-2

Abstract

The notion of m-regular system on the Hermitian variety \Bbb H( n, q 2) was introduced by B. Segre (Ann. Math. Pura Appl. 70:1-201, 1965). Here, three infinite families of hemisystems on \Bbb H(5, q 2), q odd, are constructed.

Pages: 437–445

Keywords: keywords Hermitian variety; commuting polarities; regular system; hemisystem

Full Text: PDF

References

1. Bruen, A.A., Hirschfeld, J.W.P.: Applications of line geometry over finite fields, II. The Hermitian surface. Geom. Dedicata 7(3), 333-353 (1978)
2. Cameron, P.J.: Partial quadrangles. Quart. J. Math. Oxford Ser. 26(2), 61-73 (1975)
3. Cameron, P.J., Goethals, J.M., Seidel, J.J.: Strongly regular graphs having strongly regular subconstituents. J. Algebra 55(2), 257-280 (1978)
4. Cossidente, A., King, O.H.: Maximal orthogonal subgroups of finite unitary groups. J. Group Theory 7, 447-462 (2004)
5. Cossidente, A., Penttila, T.: Hemisystems on the Hermitian surface. J. London Math. Soc. (2) 72(3), 731-741 (2005)
6. Cossidente, A., Penttila, T.: Segre's hemisystem and McLaughlin's graph. J. Comb. Theory Ser. A 115(4), 686-692 (2008)
7. Cannon, J., Playoust, C.: An introduction to MAGMA. University of Sidney, Sidney, Australia (1993)
8. Hirschfeld, J.W.P., Thas, J.A.: General Galois Geometries. Clarendon Press, Oxford (1991)
9. Kleidman, P.B.: The subgroup structure of some finite simple groups. Ph.D. Thesis, University of Cambridge (1987)
10. Kleidman, P., Liebeck, M.: The Subgroup Structure of the Finite Classical Groups. Cambridge University Press, Cambridge (1990)
11. Segre, B.: Forme e geometrie Hermitiane con particolare riguardo al caso finito. Ann. Mat. Pura Appl.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition