ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Chains in the Bruhat order

Alexander Postnikov and Richard P. Stanley
M.I.T. Department of Mathematics Cambridge MA 02139 USA

DOI: 10.1007/s10801-008-0125-4

Abstract

We study a family of polynomials whose values express degrees of Schubert varieties in the generalized complex flag manifold G/ B. The polynomials are given by weighted sums over saturated chains in the Bruhat order. We derive several explicit formulas for these polynomials, and investigate their relations with Schubert polynomials, harmonic polynomials, Demazure characters, and generalized Littlewood-Richardson coefficients. In the second half of the paper, we study the classical flag manifold and discuss related combinatorial objects: flagged Schur polynomials, 312-avoiding permutations, generalized Gelfand-Tsetlin polytopes, the inverse Schubert-Kostka matrix, parking functions, and binary trees.

Pages: 133–174

Keywords: keywords flag manifold; Schubert varieties; Bruhat order; saturated chains; harmonic polynomials; Grothendieck ring; Demazure modules; Schubert polynomials; flagged Schur polynomials; 312-avoiding permutations; kempf elements; vexillary permutations; Gelfand-tsetlin polytope; toric degeneration; parking functions; binary trees

Full Text: PDF

References

1. Bergeron, N., Garsia, A.M.: On certain spaces of harmonic polynomials. Contemporary Mathematics 138, 51-86 (1992)
2. Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Schubert cells, and the cohomology of the spaces G/P . Russian Mathematical Surveys 28, 1-26 (1973)
3. Billey, S., Jockusch, W., Stanley, R.: Some combinatorial properties of Schubert polynomials. Journal of Algebraic Combinatorics 2(4), 345-374 (1993)
4. Billey, S., Lakshmibai, V.: Singular loci of Schubert varieties. Progress in Mathematics, vol.
182. Birkhäuser, Boston (2000).
5. Borel, A.: Sur la cohomologie de espaces fibrés principaux et des espaces homogénes des groupes de Lie compacts. Annals of Mathematics, Second Series 57, 115-207 (1953)
6. Chevalley, C.: Sur les décompositions cellulaires des espaces G/B. In: Proceedings of Symposia in Pure Mathematics. Part
1. Algebraic groups and their generalizations: Classical methods, vol. 56. pp. 1-23. American Mathematical Society, Providence (1994) (University Park, PA, 1991) (Original manuscript circa 1958)
7. Dehy, R., Yu, R.W.T.: Degeneration of Schubert varieties of SL/n/B to toric varieties. Université de Grenoble, Annales de l'Institut Fourier 51(6), 1525-1538 (2001)
8. Demazure, M.: Désingularisation des variétés de Schubert généralisées. Annales Scientifiques de l'École Normale Supérieure, Quatrième Série f 7, 53-88 (1974)
9. Duan, H.: The degree of a Schubert variety. Advances in Mathematics 180(1), 112-133 (2003)
10. Fomin, S., Gelfand, S., Postnikov, A.: Quantum Schubert polynomials. Journal of the American Mathematical Society 10(3), 565-596 (1997)
11. Fomin, S., Kirillov, A.: The Yang-Baxter equation, symmetric functions, and Schubert polynomials. Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993). Discrete Mathematics 153(1-3), 123-143 (1996) J Algebr Comb (2009) 29: 133-174
12. Gessel, I.: Private communication (1996)
13. Gessel, I., Viennot, G.: Determinants, paths, and plane partitions. Unpublished manuscript (1986)
14. Gonciulea, N., Lakshmibai, V.: Degenerations of flag and Schubert varieties to toric varieties. Transformation Groups 1(3), 215-248 (1996)
15. Egecioglu, Ö., Remmel, J.: A combinatorial interpretation of the inverse Kostka matrix. Linear and Multilinear Algebra 26, 59-84 (1990)
16. Hulsurkar, S.G.: Proof of Verma's conjecture on Weyl's dimension polynomial. Inventiones Mathematicae 27, 45-52 (1974)
17. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol.
29. Cambridge University Press, Cambridge (1990)
18. Kogan, M.: Schubert Geometry of Flag Varieties and Gelfand-Cetlin Theory. Ph.D. Thesis, M.I.T., June 2000
19. Kogan, M., Miller, E.: Toric degeneration of Schubert varieties and Gel'fand-Cetlin polytopes. arXiv: math.AG/0303208 (2003)
20. Kriloff, C., Ram, A.: Representations of graded Hecke algebras. Representation Theory 6, 31-69 (2002). (Electronic)
21. Kreweras, G.: Une famille de polynômes ayant plusieurs propriétés énumeratives. Periodica Mathematica Hungarica 11(4), 309-320 (1980)
22. Kung, J.P.S., Yan, C.: Gon\?carov polynomials and parking functions. Journal of Combinatorial Theory Ser. A 102(1), 16-37 (2003)
23. Lakshmi Bai, V.: Kempf varieties. The Journal of the Indian Mathematical Society, New Series 40(1- 4), 299-349 (1976)
24. Lascoux, A.: Classes de Chern des variétés de drapeaux. Comptes Rendus des Séances de l'Académie des Sciences, Série I, Mathématique 295(5), 393-398 (1982)
25. Lascoux, A., Schützenberger, M.: Géométrie algébrique-Polynômes de Schubert. Comptes Rendus des Séances de l'Académie des Sciences, Série I, Mathématique 294(13), 447-450 (1982)
26. Lascoux, A., Schützenberger, M.: Symmetry and flag manifolds, In: Invariant Theory (Montecatini, 1982). Lecture Notes in Mathematics, vol. 996, pp. 118-144. Springer, Berlin (1983)
27. Lenart, C., Sottile, F.: Skew Schubert polynomials. Proceedings of the American Mathematical Society 131(11), 3319-3328 (2003)
28. Manivel, L.: Symmetric Functions, Schubert Polynomials, and Degeneracy Loci. SMF/AMS Texts and Monographs, vol.
6. American Mathematical Society, Providence (2001)
29. Pitman, J., Stanley, R.P.: A polytope related to empirical distributions, plane trees, parking functions, and the associahedron. Discrete Computational Geometry 27(4), 603-634 (2002)
30. Reiner, V., Shimozono, M.: Key polynomials and a flagged Littlewood-Richardson rule. Journal of Combinatorial Theory, Series A 70(1), 107-143 (1995)
31. Stanley, R.P.: Enumerative Combinatorics, Vol.
1. Cambridge Studies in Advanced Mathematics, vol.
49. Cambridge University Press, Cambridge (1997).
32. Stanley, R.P.: Enumerative Combinatorics, Vol.
2. Cambridge Studies in Advanced Mathematics, vol.
62. Cambridge University Press, Cambridge (1999).




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition