
J Algebr Comb (2009) 29: 133–174
DOI 10.1007/s10801-008-0125-4

Chains in the Bruhat order

Alexander Postnikov · Richard P. Stanley

Received: 30 August 2006 / Accepted: 29 January 2008 / Published online: 15 March 2008
© Springer Science+Business Media, LLC 2008

Abstract We study a family of polynomials whose values express degrees of Schu-
bert varieties in the generalized complex flag manifold G/B. The polynomials are
given by weighted sums over saturated chains in the Bruhat order. We derive sev-
eral explicit formulas for these polynomials, and investigate their relations with
Schubert polynomials, harmonic polynomials, Demazure characters, and general-
ized Littlewood-Richardson coefficients. In the second half of the paper, we study
the classical flag manifold and discuss related combinatorial objects: flagged Schur
polynomials, 312-avoiding permutations, generalized Gelfand-Tsetlin polytopes, the
inverse Schubert-Kostka matrix, parking functions, and binary trees.

Keywords Flag manifold · Schubert varieties · Bruhat order · Saturated chains ·
Harmonic polynomials · Grothendieck ring · Demazure modules · Schubert
polynomials · Flagged Schur polynomials · 312-avoiding permutations · Kempf
elements · Vexillary permutations · Gelfand-Tsetlin polytope · Toric degeneration ·
Parking functions · Binary trees

1 Introduction

The complex generalized flag manifold G/B embeds into projective space P(Vλ), for
an irreducible representation Vλ of G. The degree of a Schubert variety Xw ⊂ G/B

A.P. was supported in part by National Science Foundation grant DMS-0201494 and by
Alfred P. Sloan Foundation research fellowship. R.S. was supported in part by National Science
Foundation grant DMS-9988459.

A. Postnikov (�) · R.P. Stanley
Department of Mathematics, M.I.T., Cambridge, MA 02139, USA
e-mail: apost@math.mit.edu

R.P. Stanley
e-mail: rstan@math.mit.edu

mailto:apost@math.mit.edu
mailto:rstan@math.mit.edu


134 J Algebr Comb (2009) 29: 133–174

in this embedding is a polynomial function of λ. The aim of this paper is to study the
family of polynomials Dw in r = rank(G) variables that express degrees of Schubert
varieties. According to Chevalley’s formula [6], also known as Monk’s rule in type A,
these polynomials are given by weighted sums over saturated chains from id to w in
the Bruhat order on the Weyl group. These weighted sums over saturated chains ap-
peared in Bernstein-Gelfand-Gelfand [2] and in Lascoux-Schützenberger [26]. Stem-
bridge [34] recently investigated these sums in the case when w = w◦ is the longest
element in the Weyl group. The value Dw(λ) is also equal to the leading coefficient
in the dimension of the Demazure modules Vkλ,w , as k → ∞.

The polynomials Dw are dual to the Schubert polynomials Sw with respect a
certain natural pairing on the polynomial ring. They form a basis in the space of
W -harmonic polynomials. We show that Bernstein-Gelfand-Gelfand’s results [2] eas-
ily imply two different formulas for the polynomials Dw . The first “top-to-bottom”
formula starts with the top polynomial Dw◦ , which is given by the Vandermonde
product. The remaining polynomials Dw are obtained from Dw◦ by applying differ-
ential operators associated with Schubert polynomials. The second “bottom-to-top”
formula starts with Did = 1. The remaining polynomials Dw are obtained from Did

by applying certain integration operators. Duan’s recent result [9] about degrees of
Schubert varieties can be deduced from the bottom-to-top formula.

Let cw
u,v be the generalized Littlewood-Richardson coefficients defined as the

structure constants of the cohomology ring of G/B in the basis of Schubert classes.
The coefficients cw

u,v are related to the polynomials Dw in two different ways. Define
a more general collection of polynomials Du,w as sums over saturated chains from u

to w in the Bruhat order with similar weights. (In particular, Dw = Did,w .) The poly-
nomials Du,w extend the Dw in the same way as the skew Schur polynomials extend
the usual Schur polynomials. The expansion coefficients of Du,w in the basis of Dv’s
are exactly the generalized Littlewood-Richardson coefficients: Du,w =∑v cw

u,v Dv .
On the other hand, we have Dw(y + z) =∑u,v cw

u,v Du(y)Dw(z), where Dw(y + z)

denote the polynomial in pairwise sums of two sets y and z of variables.
We pay closer attention to the Lie type A case. In this case, the Weyl group

is the symmetric group W = Sn. Schubert polynomials for vexillary permutations,
i.e., 2143-avoiding permutations, are known to be given by flagged Schur polynomi-
als. From this we derive a more explicit formula for the polynomials Dw for 3412-
avoiding permutations w and, in particular, an especially nice determinant expression
for Dw in the case when w is 312-avoiding.

It is well-known that the number of 312-avoiding permutations in Sn is equal
to the Catalan number Cn = 1

n+1

(2n
n

)
. Actually, these permutations are exactly the

Kempf elements studied by Lakshmibai [23] (though her definition is quite differ-
ent). We show that the characters ch(Vλ,w) of Demazure modules for 312-avoiding
permutations are given by flagged Schur polynomials. (Here flagged Schur polyno-
mials appear in a different way than in the previous paragraph.) This expression can
be geometrically interpreted in terms of generalized Gelfand-Tsetlin polytopes Pλ,w

studied by Kogan [18]. The Demazure character ch(Vλ,w) equals a certain sum over
lattice points in Pλ,w , and thus, the value Dw(λ) equals the normalized volume of
Pλ,w . The generalized Gelfand-Tsetlin polytopes Pλ,w are related to the toric degen-
eration of Schubert varieties Xw constructed by Gonciulea and Lakshmibai [14].
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One can expand Schubert polynomials as nonnegative sums of monomials using
RC-graphs. We call the matrix K of coefficients in these expressions the Schubert-
Kostka matrix, because it extends the usual Kostka matrix. It is an open problem to
find a subtraction-free expression for entries of the inverse Schubert-Kostka matrix
K−1. The entries of K−1 are exactly the coefficients of monomials in the polynomi-
als Dw normalized by a product of factorials. On the other hand, the entries of K−1

are also the expansion coefficients of Schubert polynomials in terms of standard ele-
mentary monomials. We give a simple expression for entries of K−1 corresponding
to 312-avoiding permutations and 231-avoiding permutations. Actually, these special
entries are always equal to ±1, or 0.

We illustrate our results by calculating the polynomial Dw for the long cycle w =
(1,2, . . . , n) ∈ Sn in five different ways. First, we show that Dw equals a sum over
parking functions. This polynomial appeared in Pitman-Stanley [29] as the volume
of a certain polytope. Indeed, the generalized Gelfand-Tsetlin polytope Pλ,w for the
long cycle w, which is a 312-avoiding permutation, is exactly the polytope studied
in [29]. Then the determinant formula leads to another simple expression for Dw

given by a sum of 2n monomials. Finally, we calculate Dw by counting saturated
chains in the Bruhat order and obtain an expression for this polynomial as a sum over
binary trees.

The general outline of the paper follows. In Section 2, we give basic notation re-
lated to root systems. In Section 3, we recall classical results about Schubert calculus
for G/B . In Section 4, we define the polynomials Dw and Du,w and discuss their
geometric meaning. In Section 5, we discuss the pairing on the polynomial ring and
harmonic polynomials. In Section 6, we prove the top-to-bottom and the bottom-to-
top formulas for the polynomial Dw and give several corollaries. In particular, we
show how these polynomials are related to the generalized Littlewood-Richardson
coefficients. In Section 7, we give several examples and deduce Duan’s formula. In
Section 8, we recall a few facts about the K-theory of G/B . In Section 9, we give a
simple proof of the product formula for Dw◦ . In Section 10, we mention a formula
for the permanent of a certain matrix. The rest of the paper is concerned with the type
A case. In Section 11, we recall Lascoux-Schützenberger’s definition of Schubert
polynomials. In Section 12, we specialize the results of the first half of the paper to
type A. In Section 13, we discuss flagged Schur polynomials, vexillary and dominant
permutations, and give a simple formula for the polynomials Dw , for 312-avoiding
permutations. In Section 14, we give a simple proof of the fact that Demazure charac-
ters for 312-avoiding permutations are given by flagged Schur polynomials. In Sec-
tion 15, we interpret this claim in terms of generalized Gelfand-Tsetlin polytopes.
In Section 17, we discuss the inverse of the Schubert-Kostka matrix. In Section 18,
we discuss the special case of the long cycle related to parking functions and binary
trees.

2 Notations

Let G be a complex semisimple simply-connected Lie group. Fix a Borel subgroup
B and a maximal torus T such that G ⊃ B ⊃ T . Let h be the corresponding Cartan
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subalgebra of the Lie algebra g of G, and let r be its rank. Let � ⊂ h∗ denote the
corresponding root system. Let �+ ⊂ � be the set of positive roots corresponding to
our choice of B . Then � is the disjoint union of �+ and �− = −�+. Let V ⊂ h∗ be
the linear space over Q spanned by �. Let α1, . . . , αr ∈ �+ be the associated set of
simple roots. They form a basis of the space V . Let (x, y) denote the scalar product
on V induced by the Killing form. For a root α ∈ �, the corresponding coroot is
given by α∨ = 2α/(α,α). The collection of coroots forms the dual root system �∨.

The Weyl group W ⊂ Aut(V ) of the Lie group G is generated by the reflections sα :
y 
→ y − (y,α∨)α, for α ∈ � and y ∈ V . Actually, the Weyl group W is generated
by simple reflections s1, . . . , sr corresponding to the simple roots, si = sαi

, subject to
the Coxeter relations: (si)

2 = 1 and (sisj )
mij = 1, where mij is half the order of the

dihedral subgroup generated by si and sj .
An expression of a Weyl group element w as a product of generators w = si1 · · · sil

of minimal possible length l is called a reduced decomposition for w. Its length l is
called the length of w and denoted �(w). The Weyl group W contains a unique longest
element w◦ of maximal possible length �(w◦) = |�+|.

The Bruhat order on the Weyl group W is the partial order relation “≤” which
is the transitive closure of the following covering relation: u � w, for u,w ∈ W ,
whenever w = usα , for some α ∈ �+, and �(u) = �(w) − 1. The Bruhat order has
the unique minimal element id and the unique maximal element w◦. This order can
also be characterized, as follows. For a reduced decomposition w = si1 · · · sil ∈ W

and u ∈ W , u ≤ w if and only if there exists a reduced decomposition u = sj1 · · · sjs

such that j1, . . . , js is a subword of i1, . . . , il .
Let � denote the weight lattice � = {λ ∈ V | (λ,α∨) ∈ Z for any α ∈ �}. It is

generated by the fundamental weights ω1, . . . ,ωr that form the dual basis to the basis
of simple coroots, i.e., (ωi, α

∨
j ) = δij . The set �+ of dominant weights is given by

�+ = {λ ∈ � | (λ,α∨) ≥ 0 for any α ∈ �+}. A dominant weight λ is called regular
if (λ,α∨) > 0 for any α ∈ �+. Let ρ = ω1 + · · · + ωr = 1

2

∑
α∈�+ α be the minimal

regular dominant weight.

3 Schubert calculus

In this section, we recall some classical results of Borel [5], Chevalley [6], De-
mazure [8], and Bernstein-Gelfand-Gelfand [2].

The generalized flag variety G/B is a smooth complex projective variety. Let
H ∗(G/B) = H ∗(G/B,Q) be the cohomology ring of G/B with rational coefficients.
Let Q[V ∗] = Sym(V ) be the algebra of polynomials on the space V ∗ with rational
coefficients. The action of the Weyl group W on the space V induces a W -action on
the polynomial ring Q[V ∗]. According to Borel’s theorem [5], the cohomology of
G/B is canonically isomorphic1 to the quotient of the polynomial ring:

H ∗(G/B) 
 Q[V ∗]/IW, (3.1)

1The isomorphism is given by c1(Lλ) 
→ λ (mod IW ), where c1(Lλ) is the first Chern class of the line
bundle Lλ = G ×B C−λ over G/B , for λ ∈ �+ .
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where IW = 〈f ∈ Q[V ∗]W | f (0) = 0
〉

is the ideal generated by W -invariant polyno-
mials without constant term. Let us identify the cohomology ring H ∗(G/B) with this
quotient ring. For a polynomial f ∈ Q[V ∗], let f̄ = f (mod IW ) be its coset modulo
IW , which we view as a class in the cohomology ring H ∗(G/B).

One can construct a linear basis of H ∗(G/B) using the following divided differ-
ence operators (also known as the Bernstein-Gelfand-Gelfand operators). For a root
α ∈ �, let Aα : Q[V ∗] → Q[V ∗] be the operator given by

Aα : f 
→ f − sα(f )

α
. (3.2)

Notice that the polynomial f − sα(f ) is always divisible by α. The operators Aα

commute with operators of multiplication by W -invariant polynomials. Thus the Aα

preserve the ideal IW and induce operators acting on H ∗(G/B), which we will de-
note by the same symbols Aα .

Let Ai = Aαi
, for i = 1, . . . , r . The operators Ai satisfy the nilCoxeter relations

Ai Aj Ai · · ·
︸ ︷︷ ︸

mij terms

= Aj Ai Aj · · ·
︸ ︷︷ ︸

mij terms

and (Ai)
2 = 0.

For a reduced decomposition w = si1 · · · sil ∈ W , define Aw = Ai1 · · ·Ail . The op-
erator Aw depends only on w ∈ W and does not depend on a choice of reduced
decomposition.

Let us define the Schubert classes σw ∈ H ∗(G/B), w ∈ W , by

σw◦ = |W |−1
∏

α∈�+
α (mod IW), for the longest element w◦ ∈ W ;

σw = Aw−1w◦(σw◦), for any w ∈ W.

The classes σw have the following geometrical meaning. Let Xw = BwB/B ,
w ∈ W , be the Schubert varieties in G/B . According to Bernstein-Gelfand-
Gelfand [2] and Demazure [8], σw = [Xw◦w] ∈ H 2�(w)(G/B) are the cohomology
classes of the Schubert varieties. They form a linear basis of the cohomology ring
H ∗(G/B). In the basis of Schubert classes, the divided difference operators can be
expressed, as follows (see [2]):

Ai(σw) =
{

σwsi if �(wsi) = �(w) − 1,

0 if �(wsi) = �(w) + 1.
(3.3)

Remark 3.1 There are many possible choices for polynomial representatives of
the Schubert classes. In type An−1, Lascoux and Schützenberger [25] introduced
the polynomial representatives, called the Schubert polynomials, obtained from the
monomial xn−1

1 xn−2
2 · · ·xn−1 by applying the divided difference operators. Here

x1, . . . , xn are the coordinates in the standard presentation for type An−1 roots
αij = xi − xj (see [17]). Schubert polynomials have many nice combinatorial prop-
erties; see Section 11 below.



138 J Algebr Comb (2009) 29: 133–174

For σ ∈ H ∗(G/B), let 〈σ 〉 = ∫
G/B

σ be the coefficient of the top class σw◦ in
the expansion of σ in the Schubert classes. Then 〈σ · θ〉 is the Poincaré pairing on
H ∗(G/B). In the basis of Schubert classes the Poincaré pairing is given by

〈σu · σw〉 = δu,w◦w. (3.4)

The generalized Littlewood-Richardson coefficients cw
u,v , are given by

σu · σv =
∑

w∈W

cw
u,v σw, for u,v ∈ W.

Let cu,v,w = 〈σu · σv · σw〉 be the triple intersection number of Schubert varieties.
Then, according to (3.4), we have cw

u,v = cu,v,w◦w .
For a linear form y ∈ V ⊂ Q[V ∗], let ȳ ∈ H ∗(G/B) be its coset2 modulo IW .

Chevalley’s formula [6] gives the following rule for the product of a Schubert class
σw , w ∈ W , with ȳ:

ȳ · σw =
∑

(y,α∨) σwsα , (3.5)

where the sum is over all roots α ∈ �+ such that �(w sα) = �(w) + 1, i.e., the sum
is over all elements in W that cover w in the Bruhat order. The coefficients (y,α∨),
which are associated to edges in the Hasse diagram of the Bruhat order, are called
the Chevalley multiplicities. Figure 1 shows the Bruhat order on the symmetric group
W = S3 with edges of the Hasse diagram marked by the Chevalley multiplicities,
where Y1 = (y,α∨

1 ) and Y2 = (y,α∨
2 ).

We have, σid = [G/B] = 1. Chevalley’s formula implies that σsi = ω̄i (the coset
of the fundamental weight ωi ).

4 Degrees of Schubert varieties

For y ∈ V , let m(u � usα) = (y,α∨) denote the Chevalley multiplicity of a covering
relation u � usα in the Bruhat order on the Weyl group W . Let us define the weight

Fig. 1 The Bruhat order on S3
marked with the Chevalley
multiplicities

2Equivalently, ȳ = c1(Lλ), if y = λ is in the weight lattice �.
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mC = mC(y) of a saturated chain C = (u0 � u1 � u2 � · · · � ul) in the Bruhat order
as the product of Chevalley multiplicities:

mC(y) =
l∏

i=1

m(ui−1 � ui).

Then the weight mC ∈ Q[V ] is a polynomial function of y ∈ V .
For two Weyl group elements u,w ∈ W , u ≤ w, let us define the polynomial

Du,w(y) ∈ Q[V ] as the sum

Du,w(y) = 1

(�(w) − �(u))!
∑

C

mC(y) (4.1)

over all saturated chains C = (u0 �u1 �u2 � · · ·�ul) in the Bruhat order from u0 = u

to ul = w. In particular, Dw,w = 1. Let Dw = Did,w . It is clear from the definition
that Dw is a homogeneous polynomial of degree �(w) and Du,w is homogeneous of
degree �(w) − �(u).

Example 4.1 For W = S3, we have Did,231 = 1
2 (Y1Y2 +Y2(Y1 +Y2)) and D132,321 =

1
2 ((Y1 + Y2)Y1 + Y1Y2), where Y1 = (y,α∨

1 ) and Y2 = (y,α∨
2 ) (see Figure 1).

According to Chevalley’s formula (3.5), the values of the polynomials Du,w(y)

are the expansion coefficients in the following product in the cohomology ring
H ∗(G/B):

[ey] · σu =
∑

w∈W

Du,w(y) · σw, for any y ∈ V, (4.2)

where [ey] := 1 + ȳ + ȳ2/2! + ȳ3/3! + · · · ∈ H ∗(G/B). Note that [ey] involves only
finitely many nonzero summands, because Hk(G/B) = 0, for sufficiently large k.
Equation (4.2) is actually equivalent to definition (4.1) of the polynomials Du,w .

The values of the polynomials Dw(λ) at dominant weights λ ∈ �+ have the fol-
lowing natural geometric interpretation. For λ ∈ �+, let Vλ be the irreducible repre-
sentation of the Lie group G with the highest weight λ, and let vλ ∈ Vλ be a highest
weight vector. Let e : G/B → P(Vλ) be the map given by gB 
→ g(vλ), for g ∈ G.
If the weight λ is regular, then e is a projective embedding G/B ↪→ P(Vλ). Let
w ∈ W be an element of length l = �(w). Let us define the λ-degree degλ(Xw) of
the Schubert variety Xw ⊂ G/B as the number of points in the intersection of e(Xw)

with a generic linear subspace in P(Vλ) of complex codimension l. The pull-back
of the class of a hyperplane in H 2(P(Vλ)) is λ̄ = c1(Lλ) ∈ H 2(G/B). Then the
λ-degree of Xw is equal to the Poincaré pairing degλ(Xw) = 〈[Xw] · λ̄l

〉
. In other

words, degλ(Xw) equals the coefficient of the Schubert class σw , which is Poincaré
dual to [Xw] = σw◦w , in the expansion of λ̄l in the basis of Schubert classes. Cheval-
ley’s formula (3.5) implies the following well-known statement; see, e.g., [4].

Proposition 4.2 For w ∈ W and λ ∈ �+, the λ-degree degλ(Xw) of the Schubert
variety Xw is equal to the sum

∑
mC(λ) over saturated chains C in the Bruhat order
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from id to w. Equivalently,

degλ(Xw) = �(w)! · Dw(λ).

If λ = ρ, we will call deg(Xw) = degρ(Xw) simply the degree of Xw .

5 Harmonic polynomials

We discuss harmonic polynomials and the natural pairing on polynomials defined in
terms of partial derivatives. Constructions in this section are essentially well-known;
cf. Bergeron-Garsia [1].

The space of polynomials Q[V ] is the graded dual to Q[V ∗], i.e., the correspond-
ing finite-dimensional graded components are dual to each other.

Let us pick a basis v1, . . . , vr in V , and let v∗
1 , . . . , v∗

r be the dual basis in
V ∗. For f ∈ Q[V ∗] and g ∈ Q[V ], let f (x1, . . . , xr ) = f (x1v

∗
1 + · · · + xrv

∗
r ) and

g(y1, . . . , yr ) = g(y1v1 + · · · + yrvr) be polynomials in the variables x1, . . . , xr and
y1, . . . , yr , correspondingly. For each f ∈ Q[V ∗], let us define the differential opera-
tor f (∂/∂y) that acts on the polynomial ring Q[V ] by

f (∂/∂y) : g(y1, . . . , yr ) 
−→ f (∂/∂y1, . . . , ∂/∂yr) · g(y1, . . . , yr ),

where ∂/∂yi denotes the partial derivative with respect to yi . The operator f (∂/∂y)

can also be described without coordinates as follows. Let dv : Q[V ] → Q[V ] be the
differentiation operator in the direction of a vector v ∈ V given by

dv : g(y) 
→ d

d t
g(y + t v)

∣
∣
∣
∣
t=0

. (5.1)

The linear map v 
→ dv extends to the homomorphism f 
→ df from the polynomial
ring Q[V ∗] = Sym(V ) to the ring of operators on Q[V ]. Then df = f (∂/∂y).

One can extend the usual pairing between V and V ∗ to the following pairing
between the spaces Q[V ∗] and Q[V ]. For f ∈ Q[V ∗] and g ∈ Q[V ], let us define the
D-pairing (f, g)D by

(f, g)D = CT(f (∂/∂y) · g(y)) = CT(g(∂/∂x) · f (x)),

where the notation CT means taking the constant term of a polynomial.
A graded basis of a polynomial ring is a basis that consists of homogeneous poly-

nomials. Let us say that a graded Q-basis {fu}u∈U in Q[V ∗] is D-dual to a graded
Q-basis {gu}u∈U in Q[V ] if (fu, gv)D = δu,v , for any u,v ∈ U .

Example 5.1 Let xa = x
a1
1 · · ·xar

r and y(a) = y
a1
1

a1! · · · y
ar
r

ar ! , for a = (a1, . . . , ar ). Then

the monomial basis {xa} of Q[V ∗] is D-dual to the basis {y(a)} of Q[V ].

This example shows that the D-pairing gives a non-degenerate pairing of corre-
sponding graded components of Q[V ∗] and Q[V ] and vanishes on different graded
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components. Thus, for a graded basis in Q[V ∗], there exists a unique D-dual graded
basis in Q[V ] and vice versa.

For a graded space A = A0 ⊕ A1 ⊕ A2 ⊕ · · ·, let A∞ be the space of formal series
a0 + a1 + a2 + · · ·, where ai ∈ Ai . For example, Q[V ]∞ = Q[[V ]] is the ring of
formal power series. The exponential e(x,y) = ex1y1+···+xryr given by its Taylor series
can be regarded as an element of Q[[V ∗ ⊕ V ]], where (x, y) is the standard pairing
between x ∈ V ∗ and y ∈ V .

Proposition 5.2 Let {fu}u∈U be a graded basis for Q[V ∗], and let {gu}u∈U be a
collection of formal power series in Q[[V ]] labeled by the same set U . Then the
following two conditions are equivalent:

(1) The gu are the homogeneous polynomials in Q[V ] that form the D-dual basis to
{fu}.

(2) The equality e(x,y) =∑
u∈U fu(x) · gu(y) holds identically in the ring of formal

power series Q[[V ∗ ⊕ V ]].

Proof For f ∈ Q[V ∗], the action of the differential operator f (∂/∂y) on poly-
nomials extends to the action on the ring of formal power series Q[[V ]] and on
Q[[V ∗ ⊕ V ]]. The D-pairing (f, g)D makes sense for any f ∈ Q[V ∗] and g ∈
Q[[V ]]. Let C = ∑

u∈U fu(x) · gu(y) ∈ Q[[V ∗ ⊕ V ]]. Then CT(fu(∂/∂y) · C) =∑
v∈U(fu, gv)D fv(x), for any u ∈ U .
Condition (1) is equivalent to the condition that the constant term (with respect

to the y variables) of f (∂/∂y) · C is f (x), for any basis element f = fu of Q[V ∗].
The latter condition is equivalent to condition (2), which says that C = e(x,y). Indeed,
the only element E ∈ Q[[V ∗ ⊕ V ]] that satisfies CT(f (∂/∂y) · E) = f (x), for any
f ∈ Q[V ∗], is the exponential E = e(x,y). �

Let I ⊆ Q[V ∗] be a graded ideal. Define the space of I -harmonic polynomials as

HI = {g ∈ Q[V ] | f (∂/∂y) · g(y) = 0, for any f ∈ I }.

Lemma 5.3 The space HI ⊆ Q[V ] is the orthogonal subspace to I ⊆ Q[V ∗] with
respect to the D-pairing. Thus HI is the graded dual to the quotient space Q[V ∗]/I .

Proof The ideal I is orthogonal to I⊥ := {g | (f, g)D = 0, for any f ∈ I }. Clearly,
HI ⊆ I⊥. On the other hand, if (f, g)D = CT(f (∂/∂y) · g(y)) = 0, for any f ∈ I ,
then f (∂/∂y) · g(y) = 0, for any f ∈ I , because I is an ideal. Thus HI = I⊥. �

Let f̄ := f (mod I ) denote the coset of a polynomial f ∈ Q[V ∗] modulo the ideal
I . For g ∈ HI , the differentiation f̄ (∂/∂y) · g := f (∂/∂y) · g does not depend on
the choice of a polynomial representative f of the coset f̄ . Thus we have correctly
defined a D-pairing (f̄ , g)D := (f, g)D between the spaces Q[V ∗]/I and HI . Let us
say that a graded basis {f̄u}u∈U of Q[V ∗]/I and a graded basis {gu}u∈U of HI are
D-dual if (f̄u, gv)D = δu,v , for any u,v ∈ U .
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Proposition 5.4 Let {f̄u}u∈U be a graded basis of Q[V ∗]/I , and let {gu}u∈U be a
collection of formal power series in Q[[V ]] labeled by the same set U . Then the
following two conditions are equivalent:

(1) The gu are the polynomials that form the graded basis of HI such that the bases
{f̄u}u∈U and {gu}u∈U are D-dual.

(2) The equality e(x,y) =∑u∈U fu(x) ·gu(y) modulo I∞ ⊗Q[[V ]] holds identically.

Proof Let us augment the set {fu}u∈U by a graded Q-basis {fu}u∈U ′ of the ideal I .
Then {fu}u∈U∪U ′ is a graded basis of Q[V ∗]. A collection {gu}u∈U is the basis
of HI that is D-dual to {f̄u}u∈U if and only if there are elements gu ∈ Q[V ], for
u ∈ U ′, such that {fu}u∈U∪U ′ and {gu}u∈U∪U ′ are D-dual bases of Q[V ∗] and Q[V ],
correspondingly. The claim now follows from Proposition 5.2. �

The product map M : Q[V ∗]/I ⊗ Q[V ∗]/I → Q[V ∗]/I is given by M : f̄ ⊗ ḡ 
→
f̄ · ḡ. Let us define the coproduct map � : HI → HI ⊗ HI as the D-dual map to M .
For h ∈ Q[V ], the polynomial h(y + z) of the sum of two vector variables y, z ∈ V

can be regarded as an element of Q[V ] ⊗ Q[V ].

Proposition 5.5 The coproduct map � : HI → HI ⊗ HI is given by

� : g(y) 
→ g(y + z),

for any g ∈ HI .

Proof Let {f̄u}u∈U be a graded basis in Q[V ∗]/I and let {gu}u∈U be its D-dual basis
in HI . We need to show that g(y + z) ∈ HI ⊗ HI and that the two expressions

f̄u(x) · f̄v(x) =
∑

w∈U

aw
u,v f̄w(x) and gw(y + z) =

∑

u,v∈U

bw
u,v gu(y) · gv(z)

have the same coefficients aw
u,v = bw

u,v . Here x ∈ V ∗ and y, z ∈ V . Indeed, according
to Proposition 5.4, we have

∑

u,v,w

aw
u,v f̄w(x) · gu(y) · gv(z)

=
(
∑

u

f̄u(x) · gu(y)

)

·
(
∑

v

f̄v(x) · gv(z)

)

= e(x,y) e(x,z) = e(x,y+z) =
∑

w

f̄w(x) · gw(y + z)

=
∑

u,v,w

bw
u,v f̄w(x) · gu(y) · gv(z)

in the space (Q[V ∗]/I ⊗ Q[V ] ⊗ Q[V ])∞. This implies that aw
u,v = bw

u,v , for any
u,v,w ∈ U . �
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In what follows, we will assume that I = IW ⊂ Q[V ∗] is the ideal generated by
W -invariant polynomials without constant term, and Q[V ∗]/I = H ∗(G/B) is the
cohomology ring of G/B . Let HW = HIW

⊂ Q[V ] be its dual space with respect to
the D-pairing. We will call HW the space of W -harmonic polynomials and call its
elements W -harmonic polynomials in Q[V ].

6 Expressions for polynomials Du,w

In this section, we give two different expressions for the polynomials Du,w and derive
several corollaries.

Corollary 6.1 (cf. Bernstein-Gelfand-Gelfand [2, Theorem 3.13]) The collection
of polynomials Dw , w ∈ W , forms a linear basis of the space HW ⊂ Q[V ] of
W -harmonic polynomials. This basis is D-dual to the basis {σw}w∈W of Schubert
classes in H ∗(G/B).

Proof Formula (4.2), for u = id, can be rewritten as e(x,y) =∑
w∈W Sw(x)Dw(y)

modulo the ideal (IW)∞ ⊗ Q[[V ]], where Sw(x) ∈ Q[V ∗] are polynomial represen-
tatives of the Schubert classes σw ∈ Q[V ∗]/IW . Proposition 5.4 implies the state-
ment. �

This basis of W -harmonic polynomials appeared in Bernstein-Gelfand-Gelfand
[2, Theorem 3.13] (in somewhat disguised form) and more recently in Kriloff-Ram
[20, Sect. 2.2]; see Remark 6.6 below.

By the definition, the polynomial Du,w is given by a sum over saturated chains in
the Bruhat order. However, this expression involves many summands and is difficult
to handle. The following theorem given a more explicit formula for Du,w .

Let σw(∂/∂y) be the differential operator on the space of W -harmonic polyno-
mials HW given by σw(∂/∂y) : g(y) 
→ Sw(∂/∂y) · g(y), where Sw ∈ Q[V ∗] is
any polynomial representative of the Schubert class σw . According to Section 5,
σw(∂/∂y) does not depend on the choice of a polynomial representative Sw .

Theorem 6.2 For any w ∈ W , we have

Du,w(y) = σu(∂/∂y)σw◦w(∂/∂y) · Dw◦(y).

In particular, all polynomials Du,w are W -harmonic.

Proof According to (4.2), we have Du,w(λ) = 〈[eλ] · σu · σw◦w
〉
, for any weight

λ ∈ �. Since σu · σw◦w is a linear combination of σv’s, the polynomial Du,w is
a linear combination of Dv’s, so it is a W -harmonic polynomial. Moreover, it fol-
lows that the polynomial Du,w is uniquely determined by the identity (σ,Du,w)D =〈
σ · σu · σw◦w

〉
, for any σ ∈ H ∗(G/B). Let us show that the same identity holds
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for the W -harmonic polynomial D̃u,w(y) = σu(∂/∂y)σw◦w(∂/∂y) · Dw◦(y). Indeed,
(σ, D̃u,w)D equals

CT(σ (∂/∂y) · σu(∂/∂y) · σw◦w(∂/∂y) · Dw◦(y)) = (σ · σu · σw◦w,Dw◦)D.

Since {Dw}w∈W is the D-dual basis to {σw}w∈W , the last expression is equal to triple
intersection number

〈
σ · σu · σw◦w

〉
, as needed. �

Corollary 9.2 below gives a simple multiplicative Vandermonde-like expression
for Dw◦ . Theorem 6.2, together with this expression, gives an explicit “top-to-
bottom” differential formula for the W -harmonic polynomials Dw . Let us give an
alternative “bottom-to-top” integral formula for these polynomials.

For α ∈ �, let Iα be the operator that acts on polynomials g ∈ Q[V ] by

Iα : g(y) 
→
∫ (y,α∨)

0
g(y − αt) dt. (6.1)

In other words, the operator Iα integrates a polynomial g on the line interval
[y, sα(y)] ⊂ V . Clearly, this operator increases the degree of polynomials by 1.

Recall that Aα : Q[V ∗] → Q[V ∗] is the BGG operator given by (3.2).

Lemma 6.3 For α ∈ �, the operator Iα is adjoint to the operator Aα with respect to
the D-pairing. In other words,

(f, Iα(g))D = (Aα(f ), g)D, (6.2)

for any polynomials f ∈ Q[V ∗] and g ∈ Q[V ].

Proof Let us pick a basis v1, . . . , vr in V and its dual basis v∗
1 , . . . , v∗

r in V ∗ such that
v1 = α and (vi, α) = 0, for i = 2, . . . , r . Let f (x1, . . . , xr ) = f (x1v

∗
1 + · · · + xrv

∗
r )

and g(y1, . . . , yr ) = g(y1v1 + · · · + yrvr), for f ∈ Q[V ∗] and g ∈ Q[V ]. In these
coordinates, the operators Aα and Iα can be written as

Aα : f (x1, . . . , xr ) 
→ f (x1, x2, . . . , xr ) − f (−x1, x2, . . . , xr )

x1

Iα : g(y1, . . . , yr ) 
→
∫ y1

−y1

g(t, y2, . . . , yr ) dt.

These operators are linear over Q[x2, . . . , xr ] and Q[y2, . . . , yr ], correspondingly. It
is enough to verify identity (6.2) for f = xm+1

1 and g = ym
1 . For these polynomials,

we have Aα(f ) = 2xm
1 , Iα(g) = 2

m+1ym+1
1 , if m is even; and Aα(f ) = 0, Iα(g) = 0,

if m is odd. Thus (f, Iα(g))D = (Aα(f ), g)D in both cases. �

Let Ii = Iαi
, for i = 1, . . . , r .
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Corollary 6.4 The operators Ii satisfy the nilCoxeter relations

Ii Ij Ii · · ·
︸ ︷︷ ︸

mij terms

= Ij Ii Ij · · ·
︸ ︷︷ ︸

mij terms

and (Ii)
2 = 0.

Also, if Iα(g) = 0, then g is an anti-symmetric polynomial with respect to the reflec-
tion sα , and thus, g is divisible by the linear form (y,α∨) ∈ Q[V ].

Proof The first claim follows from the fact that the BGG operators Ai satisfy the
nilCoxeter relations. The second claim is clear from the formula for Iα given in the
proof of Lemma 6.3. �

For a reduced decomposition w = si1 · · · sil , let us define Iw = Ii1 · · · Isl . The op-
erator Iw depends only on w and does not depend on the choice of reduced decom-
position. Lemma 6.3 implies that the operator Aw : Q[V ∗] → Q[V ∗] is adjoint to the
operator Iw−1 : Q[V ] → Q[V ] with respect to the D-pairing.

Theorem 6.5 (cf. Bernstein-Gelfand-Gelfand [2, Theorem 3.12]) For any w ∈ W

and i = 1, . . . , r , we have

Ii · Dw =
{

Dwsi if �(wsi) = �(w) + 1,

0 if �(wsi) = �(w) − 1.

Thus the polynomials Dw are given by

Dw = Iw−1(1).

Proof Follows from Bernstein-Gelfand-Gelfand formula (3.3), Corollary 6.1, and
Lemma 6.3. �

Remark 6.6 Theorem 6.5 is essentially contained in [2]. However, Bernstein-
Gelfand-Gelfand treated the Dw not as (harmonic) polynomials but as linear func-
tionals on Q[V ∗]/IW obtained from Id by applying the operators adjoint to the
divided difference operators (with respect to the natural pairing between a lin-
ear space and its dual). It is immediate that these functionals form a basis in
(Q[V ∗]/IW)∗ 
 HW ; see [2, Theorem 3.13] and [20, Sect. 2.2]. Note that there
are several other constructions of bases of HW ; see, e.g., Hulsurkar [16].

In the next section we show that Duan’s recent result [9] about degrees of Schubert
varieties easily follows from Theorem 6.5. Note that this integral expression for the
polynomials Dw can be formulated in the general Kac-Moody setup. Indeed, unlike
the previous expression given by Theorem 6.2, it does not use the longest Weyl group
element w◦, which exists in finite types only.

For I ⊆ {1, . . . , r}, let WI be the parabolic subgroup in W generated by si , i ∈ I .
Let �+

I = {α ∈ �+ | sα ∈ WI }.

Proposition 6.7 Let w ∈ W . Let I = {i | �(wsi) < �(w)} be the descent set of w.
Then the polynomial Dw(y) is divisible by the product

∏
α∈�+

I
(y,α∨) ∈ Q[V ].
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Proof According to Corollary 6.4, it is enough to check that Iα(Dw) = 0, for any
α ∈ �+

I . We have Iα(Dw) = IαIw−1(1). The operator IαIw−1 is adjoint to AwAα

with respect to the D-pairing. Let us show that AwAα = 0, identically. Notice that
siAα = Asi(α)si , where si is regarded as an operator on the polynomial ring Q[V ∗].
Also Ai = siAi = −Aisi . Thus, for any i in the descent set I , we can write

AwAα = Aw′AiAα = −Aw′AisiAα = −Aw′AiAsi(α)si = −AwAsi(α)si ,

where w′ = wsi . Since sα ∈ WI , there is a sequence i1, . . . , il ∈ I and j ∈ I such that
si1 · · · sil (α) = αj . Thus

AwAα = ±AwAjsi1 · · · sil = ±Aw′′AjAj si1 · · · sil = 0,

as needed. �

Corollary 6.8 Fix I ⊆ {1, . . . , r}. Let wI be the longest element in the parabolic
subgroup WI . Then

DwI
(y) = Const ·

∏

α∈�+
I

(y,α∨),

where Const ∈ Q.

Proof Proposition 6.7 says that the polynomial DwI
(y) is divisible by the product∏

α∈�+
I
(y,α∨). Since the degree of this polynomial equals

degDwI
= �(wI ) = |�+

I | = deg
∏

α∈�+
I

(y,α∨),

we deduce the claim. �

In Section 9 below, we will give an alternative derivation for this multiplicative
expression for DwI

; see Corollary 9.2. We will show that the constant Const in Corol-
lary 6.8 is given by the condition DwI

(ρ) = 1.
We can express the generalized Littlewood-Richardson coefficients cw

u,v using the
polynomials Du,w in two different ways.

Corollary 6.9 For any u ≤ w in W , we have

Du,w =
∑

v∈W

cw
u,v Dv.

The polynomials Du,w extend the polynomials Dv in the same way as the skew
Schur polynomials extend the usual Schur polynomials. Compare Corollary 6.9 with
a similar formula for the skew Schubert polynomials of Lenart and Sottile [27].

Proof Let us expand the W -harmonic polynomial Du,w in the basis {Dv | v ∈ W },
see Theorem 6.2 and its proof. The coefficient of Dv in this expansion is equal to the
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coefficient of σw◦v in the expansion of the product σu · σw◦w in the Schubert classes.
This coefficient equals c

w◦v
u,w◦w = cu,v,w◦w = cw

u,v . �

Proposition 5.5 implies the following statement.

Corollary 6.10 For w ∈ W , we have the equality3

Dw(y + z) =
∑

u,v∈W

cw
u,v Du(y) · Dv(z)

of polynomials in y, z ∈ V .

Compare Corollary 6.10 with the coproduct formula [32, Eq. (7.66)] for Schur
polynomials.

7 Examples and Duan’s formula

Let us calculate several polynomials Dw using Theorem 6.5. Let Y1, . . . , Yr be the
generators of Q[V ] given by Yi = (y,α∨

i ), and let aij = (α∨
i , αj ) be the Cartan inte-

gers, for 1 ≤ i, j ≤ r . For a simple reflection w = si , we obtain

Dsi = Ii(1) =
∫ (y,α∨

i )

0
1 · dt = (y,α∨

i ) = Yi.

For w = sisj , we obtain

Dsi sj = Ij Ii(1) = Ij (Yi) = Ij ((y,α
∨
i )) =

∫ (y,α∨
j )

0
(y − t αj , α∨

i ) dt

= (y,α∨
i )

∫ (y,α∨
j )

0
dt − (αj ,α

∨
i )

∫ (y,α∨
j )

0
t dt = YiYj − aij

Y 2
j

2
.

We can further iterate this procedure. The following lemma is obtained immedi-
ately from the definition of Ij ’s, as shown above.

Lemma 7.1 For any 1 ≤ i1, . . . , in, j ≤ r and c1, . . . , cn ∈ Z≥0, the operator Ij maps
the monomial Y

c1
i1

· · ·Y cn

in
to Ij (Y

c1
i1

· · ·Y cn

in
) equal

∑

k1+···+kn=k

(−1)k
(

c1

k1

)

· · ·
(

cn

kn

)

a
k1
i1 j · · ·akn

in j Y
c1−k1
i1

· · ·Y cn−kn

in

Y k+1
j

k + 1
,

where the sum is over k1, . . . , kn such that
∑

ki = k, 0 ≤ ki ≤ ci , for i = 1, . . . , n.

3Here y + z denotes the usual sum of two vectors. This notation should not be confused with the λ-ring
notation for symmetric functions, where y + z means the union of two sets of variables.
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For example, for w = sisj sk , we obtain

Dsi sj sk = IkIj Ii(1) = Ik

(

YiYj − aij

Y 2
j

2

)

= YiYjYk − aik Yj

Y 2
k

2

− ajk Yi

Y 2
k

2
+ aikajk

Y 3
k

3
− aij

Y 2
j

2
Yk + aij ajkYj

Y 2
k

2
− aij a

2
jk

1

2

Y 3
k

3
.

Let us fix w ∈ W together with its reduced decomposition w = si1 · · · sil . Applying
Lemma 7.1 repeatedly for the calculation of Dw = Iil · · · Ii1(1), and transferring the
sequences of integers (k1, . . . , kn), n = 1,2, . . . , l − 1, to the columns of a triangular
array (kpq), we deduce the following result.

Corollary 7.2 [9] For a reduced decomposition w = si1 · · · sil ∈ W , we have

Dw(y) =
∑

(kpq)

∏

1≤p<q≤l

(−aipiq )
kpq

kpq !
l∏

s=1

K∗s !YK∗s+1−Ks∗
p

(K∗s + 1 − Ks∗)! ,

where the sum is over collections of nonnegative integers (kpq)1≤p<q≤l such that
K∗s + 1 ≥ Ks∗, for s = 1, . . . , l; and K∗s =∑p<s kps and Ks∗ =∑q>s ksq .

This result is equivalent to Duan’s recent result [9] about degrees deg(Xw) =
�(w)!Dw(ρ) of Schubert varieties. Note that the approach and notations of [9] are
quite different from ours.

8 K-theory and Demazure modules

In this section, we recall a few facts about the K-theory of G/B .

Denote by K(G/B) = K(G/B,Q) the Grothendieck ring of vector bundles on
G/B with rational coefficients. Let Q[�] be the group algebra of the weight lattice �.
It has a linear basis of formal exponentials {eλ | λ ∈ �} with multiplication eλ · eμ =
eλ+μ, i.e., Q[�] is the algebra of Laurent polynomials in the variables eω1, · · · , eωr .
The action of the Weyl group on � extends to a W -action on Q[�]. Let ε : Q[�] → Q

be the linear map such that ε(eλ) = 1, for any λ ∈ �, i.e., ε(f ) is the sum of coef-
ficients of exponentials in f . Then the Grothendieck ring K(G/B) is canonically
isomorphic4 to the quotient ring:

K(G/B) 
 Q[�]/JW,

where JW = 〈f ∈ Q[�]W | ε(f ) = 0
〉

is the ideal generated by W -invariant elements
f ∈ Q[�] with ε(f ) = 0. Let us identify the Grothendieck ring K(G/B) with the

4The isomorphism is given by sending the K-theoretic class [Lλ]K ∈ K(G/B) of the line bundle Lλ to

the coset eλ (mod JW ), for any λ ∈ �.
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quotient Q[�]/JW via this isomorphism. Since ε annihilates the ideal JW , it induces
the map ε : K(G/B) → Q, which we denote by the same letter.

The Demazure operators Ti : Q[�] → Q[�], i = 1, . . . , r , are given by

Ti : f 
→ f − e−αi si(f )

1 − e−αi
. (8.1)

The Demazure operators satisfy the Coxeter relations Ti Tj Ti · · · = Tj Ti Tj · · · (each
product has mij terms) and (Ti)

2 = Ti . For a reduced decomposition w = si1 · · · sil ∈
W , define Tw = Ti1 · · ·Til . The operator Tw depends only on w ∈ W and does not
depend on a choice of reduced decomposition. The operators Ti commute with oper-
ators of multiplication by W -invariant elements. Thus the Ti preserve the ideal JW

and induce operators acting on the Grothendieck ring K(G/B), which we will denote
by same symbols Ti .

The Grothendieck classes γw ∈ K(G/B), w ∈ W , can be constructed, as follows.

γw◦ = |W |−1
∏

α∈�+
(1 − e−α) (mod JW);

γw = Tw−1w◦(γw◦), for any w ∈ W.

According to Demazure [8], the classes γw are the K-theoretic classes [OX]K of the
structure sheaves of Schubert varieties X = Xw◦w . In particular, γid = [OG/B ]K = 1.
The classes γw , w ∈ W , form a linear basis of K(G/B).

Moreover, we have (see [8])

Ti(γw) =
{

γwsi if �(wsi) = �(w) − 1,

γw if �(wsi) = �(w) + 1.
(8.2)

The Chern character is the ring isomorphism chern : K(G/B) → H ∗(G/B) in-
duced by the map chern : eλ 
→ [eλ], for λ ∈ �, where [eλ] := 1 + λ̄ + λ̄2/2! +
· · · ∈ H ∗(G/B) and λ̄ = c1(Lλ), as before. The isomorphism chern relates the
Grothendieck classes γw with the Schubert classes σw by a triangular transforma-
tion:

chern : γw 
→ σw + higher degree terms. (8.3)

For a dominant weight λ ∈ �+, let Vλ denote the finite dimensional irreducible
representation of the Lie group G with highest weight λ. For λ ∈ �+ and w ∈ W , the
Demazure module Vλ,w is the B-module that is dual to the space of global sections
of the line bundle Lλ on the Schubert variety Xw:

Vλ,w = H 0(Xw, Lλ)
∗.

For the longest Weyl group element w = w◦, the space Vλ,w◦ = H 0(G/B, Lλ)
∗ has

the structure of a G-module. The classical Borel-Weil theorem says that Vλ,w◦ is iso-
morphic to the irreducible G-module Vλ. Formal characters of Demazure modules
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are given by ch(Vλ,w) = ∑
μ∈� mλ,w(μ) eμ ∈ Z[�], where mλ,w(μ) is the multi-

plicity of weight μ in Vλ,w . They generalize characters of irreducible representa-
tions ch(Vλ) = ch(Vλ,w◦). Demazure’s character formula [8] says that the character
ch(Vλ,w) is given by

ch(Vλ,w) = Tw(eλ). (8.4)

9 Asymptotic expression for degree

Proposition 9.1 For any w ∈ W , the dimension of the Demazure module Vλ,w is a
polynomial in λ of degree �(w). The polynomial Dw is the leading homogeneous
component of the polynomial dimVλ,w ∈ Q[V ]. In other words, the value Dw(λ)

equals

Dw(λ) = lim
k→∞

dimVkλ,w

k�(w)
,

for any λ ∈ �+.

Proposition 9.1 together with Weyl’s dimension formula implies the following
statement, which was derived by Stembridge using Standard Monomial Theory.

Corollary 9.2 [34, Theorem 1.1] For the longest Weyl group element w = w◦, we
have

Dw◦(y) =
∏

α∈�+

(y,α∨)

(ρ,α∨)
.

Proof Weyl’s formula says that the dimension of Vλ,w◦ = Vλ is

dimVλ =
∏

α∈�+

(λ + ρ,α∨)

(ρ,α∨)
.

Taking the leading homogeneous component of this polynomial in λ, we prove the
claim for y = λ ∈ �+, and thus, for any y ∈ V . �

In order to prove Proposition 9.1 we need the following lemma.

Lemma 9.3 The map ε : K(G/B) → Q is given by ε(γw) = δw,id , for any w ∈ W .

Proof It follows directly from the definitions that the Chern character chern trans-
lates ε to the map ε · chern−1 : H ∗(G/B) → Q given by ε · chern−1 : f̄ 
→ f (0),
for a polynomial representative f ∈ Q[h] of f̄ . Thus ε · chern−1(σw) = δw,id . In-
deed, σid = 1 and all other Schubert classes σw have zero constant term, for w �= id.
Triangularity (8.3) of the Chern character implies the needed statement. �
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Proof of Proposition 9.1 The preimage of identity (4.2), for u = id, under the Chern
character chern is the following expression in K(G/B):

eλ =
∑

w∈W

Dw(λ) chern−1(σw) =
∑

w∈W

D̂w(λ)γw.

Triangularity (8.3) implies that chern−1(σw) = γw +∑
�(u)>�(w) cw,u γu and D̂w =

Dw +∑
�(u)<�(w) cu,w Du, for some coefficients cw,u ∈ Q. Thus the homogeneous

polynomial Dw is the leading homogeneous component of the polynomial D̂w . Ap-
plying the map ε · Tw to both sides of the previous expression and using Lemma 9.3,
we obtain

ε(Tw(eλ)) =
∑

u≤w

D̂u(λ).

Indeed, according to (8.2), the coefficient of γid in Tw(γu) is equal to 1 if u ≤ w,
and 0 otherwise. Thus ε(Tw(eλ)) is a polynomial in λ of degree �(w) and its leading
homogeneous component is again Dw . But, Demazure’s character formula says that
Tw(eλ) is the character of Vλ,w and ε(Tw(eλ)) = dimVλ,w . �

Lakshmibai reported the following simple geometric proof of Proposition 9.1.
Assume that λ is a dominant regular weight. We have V ∗

w,kλ = H 0(Xw, Lkλ) =
Rk , where Rk is the k-th graded component of the coordinate ring R of the im-
age of Xw in P(Vλ). The Hilbert polynomial of the coordinate ring has the form
HilbR(k) = dimRk = Akl/ l! + (lower degree terms), where l = dimC Xw = �(w),
and A = degλ(Xw) is the degree of Xw in P(Vλ). Thus limk→∞ dimVkλ,w/k�(w) =
A/l! = degλ(Xw)/�(w)! = Dw(λ).

10 Permanent of the matrix of Cartan integers

Let us give a curious consequence of Theorem 6.2.

Corollary 10.1 Let A = (aα,β) be the N ×N -matrix, N = |�+|, formed by the Car-
tan integers aα,β = (α,β∨), for α,β ∈ �+. Then the permanent of the matrix A

equals

per(A) = |W | ·
∏

α∈�+
(ρ,α∨).

The matrix A should not be confused with the Cartan matrix. The latter is a certain
r × r-submatrix of A.

Proof According to Theorem 6.2 and Corollary 9.2, we have

1 = Did = σw◦(∂/∂y) · Dw◦(y) =
⎛

⎝ 1

|W |
∏

α∈�+
dα

⎞

⎠ ·
⎛

⎝
∏

β∈�+

(y,β∨)

(ρ,β∨)

⎞

⎠ ,
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where dα is the operator of differentiation with respect to a root α given by (5.1).
Using the product rule for differentiation and the fact that dα · (y,β∨) = (α,β∨), we
derive the claim. �

For type An−1, we obtain the following result.

Corollary 10.2 Let B = (bij,k) be the
(
n
2

) × n-matrix with rows labeled by pairs
1 ≤ i < j ≤ n and columns labeled by k = 1, . . . , n such that bij,k = δi,j − δj,k . Then

per(B · BT ) = 1!2! · · ·n!.

Proof For type An−1, the matrix A in Corollary 10.1 equals B · BT . �

This claim can be also derived from the Cauchy-Binet formula for permanents.
For example, for type A3, we have

per

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

·
⎡

⎢
⎣

1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1

⎤

⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 1!2!3!4!.

Note that the rank of the
(
n
2

)× (n2
)
-matrix B · BT is at most n − 1. Thus the deter-

minant of this matrix is zero, for n ≥ 3. It would be interesting to find a combinatorial
proof of Corollary 10.2.

11 Schubert polynomials

In the rest of the paper we will be mainly concerned with the case G = SLn.
The root system � associated to SLn is of the type An−1. In this case, the spaces V

can be presented as V = Q
n/(1, . . . ,1)Q. Then � = {εi − εj ∈ V | 1 ≤ i �= j ≤ n},

where the εi are images of the coordinate vectors in Q
n. The Weyl group is the

symmetric group W = Sn of order n that acts on V by permuting the coordinates
in Q

n. The Coxeter generators are the adjacent transpositions si = (i, i + 1). The
length �(w) of a permutation w ∈ Sn is the number of inversions in w. The longest
permutation in Sn is w◦ = n,n − 1, · · · ,2,1.

The quotient SLn/B is the classical complex flag variety. Its cohomology ring
H ∗(SLn/B) over Q is canonically identified with the quotient

H ∗(SLn/B) = Q[x1, . . . , xn]/In,

where In = 〈e1, . . . , en〉 is the ideal generated by the elementary symmetric polyno-
mials ei in the variables x1, . . . , xn. The divided difference operators Ai act on the
polynomial ring Q[x1, . . . , xn] by

Ai : f (x1, . . . , xn) 
→ f (x1, . . . , xn) − f (x1, . . . , xi−1, xi+1, xi, xi+1, . . . , xn)

xi − xi+1
.
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For a reduced decomposition w = si1 · · · sil , let Aw = Ai1 · · ·Ail .
Lascoux and Schützenberger [25] defined the Schubert polynomials Sw , for

w ∈ Sn, by

Sw◦ = xn−1
1 xn−2

2 · · ·xn−1 and Sw = Aw−1w◦(Sw◦).

Then the cosets of Schubert polynomials Sw modulo the ideal In are the Schubert
classes σw = S̄w in H ∗(SLn/B).

This particular choice of polynomial representatives for the Schubert classes has
the following stability property. The symmetric group Sn is naturally embedded into
Sn+1 as the set of order n + 1 permutations that fix the element n + 1. Then the
Schubert polynomials remain the same under this embedding.

Let S∞ be the injective limit of symmetric groups S1 ↪→ S2 ↪→ S3 ↪→ ·· ·. In other
words, S∞ is the group of infinite permutations w : Z>0 → Z>0 such that w(i) = i

for almost all i’s. We think of Sn as the subgroup of infinite permutations w ∈ S∞
that fix all i > n. Let Q[x1, x2, . . .] be the polynomial ring in infinitely many vari-
ables x1, x2, . . .. The stability of the Schubert polynomials under the embedding
Sn ↪→ Sn+1 implies that the Schubert polynomials Sw ∈ Q[x1, x2, . . .] are consis-
tently defined for any w ∈ S∞. Moreover, {Sw}w∈S∞ is a basis of the polynomial
ring Q[x1, x2, . . .].

12 Degree polynomials for type A

Let us summarize properties of the polynomials Du,w for type An−1.
Let y1, . . . , yn be independent variables. Let us assign to each edge w � wsij in

the Hasse diagram of the Bruhat order on Sn the weight m(w,wsij ) = yi − yj . For
a saturated chain C = (u0 � u1 � u2 � · · · � ul) in the Bruhat order, we define its
weight as mC(y) = m(u0, u1)m(u1, u2) · · ·m(ul−1, ul).

For u,w ∈ Sn such that u ≤ w, the polynomial Du,w ∈ Q[y1, . . . , yn] is defined as
the sum

Du,w = 1

�(w)!
∑

C

mC(y)

over all saturated chains C = (u0 � u1 � · · · � ul) from u0 = u to ul = w in the
Bruhat order. Also Dw := Did,w .

The subspace Hn of Sn-harmonic polynomials in Q[y1, . . . , yn] is given by

Hn = {g ∈ Q[y1, . . . , yn] | f (∂/∂y1, . . . , ∂/∂yn) · g(y1, . . . , yn) = 0 for any f ∈ In}.

Corollary 12.1 (1) The polynomials Dw , w ∈ Sn, form a basis of Hn.
(2) The polynomials Du,w , u,w ∈ Sn, can be expressed as

Dw◦ = 1

1!2! · · · (n − 1)!
∏

1≤i<j≤n

(yi − yj ) = det

((
y

(n−j)
i

)n

i,j=1

)

,

Du,w = Su(∂/∂y1, . . . , ∂/∂yn)Sw◦w(∂/∂y1, . . . , ∂/∂yn) · Dw◦,
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where a(b) = ab

b! .
(3) The polynomials Dw , w ∈ Sn, can be also expressed as

Dw = Iw−1(1),

where Iw = Ii1 · · · Iil , for a reduced decomposition w = si1 · · · sil , and the operators
I1, . . . , In−1 on Q[y1, . . . , yn] are given by

Ii : g(y1, . . . , yn) 
→
∫ yi−yi+1

0
g(y1, . . . , yi−1, yi − t, yi+1 + t, yi+2, . . . , yn) dt.

The following symmetries are immediate from the definition of the polynomi-
als Dw .

Lemma 12.2 (1) For any w ∈ Sn, we have

Dw(y1, . . . , yn) = Dw◦ww◦(−yn, . . . ,−y1).

(2) Also Dw(y1 + c, . . . , yn + c) = Dw(y1, . . . , yn), for any constant c.

The spaces Hn of Sn-harmonic polynomials are embedded in the polynomial ring
Q[y1, y2, . . .] in infinitely many variables: H1 ⊂ H2 ⊂ H3 ⊂ · · · ⊂ Q[y1, y2, . . .].
Moreover, the union of all Hn’s is exactly this polynomial ring. It is clear from the
definition that the polynomials Dw are stable under the embedding Sn ↪→ Sn+1. Thus
the polynomials Dw ∈ Q[y1, y2, . . .] are consistently defined for any w ∈ S∞.

Corollary 12.3 (1) The set of polynomials Dw , w ∈ S∞, forms a linear basis of the
polynomial ring Q[y1, y2, . . .].

(2) The basis {Sw}w∈S∞ of Schubert polynomials in Q[x1, x2, . . .] is D-dual5 to
the basis {Dw}w∈S∞ in Q[y1, y2, . . .], i.e., (Su,Dw)D = δu,w , for any u,w ∈ S∞.

Proof Let u,v ∈ S∞. Then, for sufficiently large n, we have u,v ∈ Sn. Now the
identity (Su,Dw)D = δu,w follows from Corollary 6.1. �

13 Flagged Schur polynomials

Let μ = (μ1, . . . ,μn), μ1 ≥ · · · ≥ μn ≥ 0, be a partition, β = (β1, . . . , βm) be a non-
negative integer sequence, and a = (a1 ≤ · · · ≤ an) and b = (b1 ≤ · · · ≤ bn) be two
weakly increasing positive integer sequences. A flagged semistandard Young tableau
of shape μ, weight β , with flags a and b is an array of positive integers T = (tij ),
i = 1, . . . , n, j = 1, . . . ,μi , such that

(1) entries strictly increase in the columns: t1j < t2j < t3j < · · ·;

5Note that D-pairing between polynomials in n variables is stable under the embedding Q[x1, . . . , xn] ⊂
Q[x1, . . . , xn+1]. Thus D-pairing is consistently defined for polynomials in infinitely many variables.
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(2) entries weakly increase in the rows: ti1 ≤ ti2 ≤ ti3 < · · ·;
(3) βk = #{(i, j) | tij = k} is the number of entries k in T , for k = 1, . . . ,m;
(4) for all entries in the i-th row, we have ai ≤ tij ≤ bi .

The flagged Schur polynomial sa,b
μ = sa,b

μ (x) ∈ Q[x1, x2, . . .] is defined as the sum

sa,b
μ (x) =

∑
xT

over all flagged semistandard Young tableaux T of shape μ with flags a and b and
arbitrary weight, where xT := x

β1
1 · · ·xβm

m and β = (β1, . . . , βm) is the weight of T .

Note that s
(1,...,1),(n,...,n)
μ is the usual Schur polynomial sμ(x1, . . . , xn). Flagged

Schur polynomials were originally introduced by Lascoux and Schützenberger [25].
The polynomial sa,b

μ (x) does not depend on the flag a provided that ai ≤ i, for
i = 1, . . . , n. Indeed, entries in the i-th row of any semistandard Young tableaux (of a
standard shape) are greater than or equal to i. Thus the condition ai ≤ tij is redundant.
Let

sb
μ(x) := s(1,...,1),b

μ (x) = s(1,...,n),b
μ (x).

Flagged semistandard Young tableaux can be presented as collections of n non-
crossing lattice paths on Z × Z that connect points A1, . . . ,An with B1, . . . ,Bn,
where Ai = (−i, ai) and Bi = (μi − i, bi). Let us assign the weight xi to each edge
(i, j) → (i, j + 1) in a lattice path and weight 1 to an edge (i, j) → (i + 1, j). Then
the product of weights over all edges in the collection of lattice paths corresponding
to a flagged tableau T equals xT . According to the method of Gessel and Viennot [13]
for counting non-crossing lattice paths, the flagged Schur polynomial sa,b

μ (x) equals
the determinant

sa,b
μ (x) = det

(
h

[aj ,bi ]
μi−i+j

)n

i,j=1
, (13.1)

where, for k ≤ l,

h[k,l]
m = hm(xk, xk+1, . . . , xl) =

∑

k≤i1≤···≤im≤l

xi1 · · ·xim

is the complete homogeneous symmetric polynomial of degree m in the variables
xk, . . . , xl ; and h

[k,l]
m = 0, for k > l. Another proof of this result was given by

Wachs [35].
For permutations w = w1 · · ·wn in Sn and σ = σ1 · · ·σr in Sr , let us say that w is

σ -avoiding if there is no subset I = {i1 < · · · < ir } ⊆ {1, . . . , n} such that the numbers
wi1, . . . ,wir have the same relative order as the numbers σ1, . . . , σr . Let Sσ

n ⊆ Sn be
the set of σ -avoiding permutations in Sn. For example, a permutation w = w1 · · ·wn

is 312-avoiding if there are no i < j < k such that wi > wk > wj . It is well-known
that, for any permutation σ ∈ S3 of size 3, the number of σ -avoiding permutations
in Sn equals the Catalan number 1

n+1

(2n
n

)
. A permutation w is called vexillary if it is

2143-avoiding.
Lascoux and Schützenberger [25] stated that Schubert polynomials for vexillary

permutations are certain flagged Schur polynomials. This claim was clarified and
proved by Wachs [35].
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For a permutation w = w1 · · ·wn is Sn, the inversion sets Invi (w), i = 1, . . . , n,
are defined as

Invi (w) = {j | i < j ≤ n and wi > wj }.
The code of the permutation w is the sequence code(w) = (c1, . . . , cn) given by

ci = ci(w) = |Invi (w)| = #{j | j > i, wj < wi} for i = 1, . . . , n.

The map w 
→ code(w) is a bijection between the set of permutations Sn and the set
of vectors {(c1, . . . , cn) ∈ Z

n | 0 ≤ ci ≤ n − i, for i = 1, . . . , n}.
The shape of the permutation w ∈ Sn is the partition μ = (μ1 ≥ · · · ≥ μm) given

by nonzero components ci of its code arranged in decreasing order. The flag of
the permutation w ∈ Sn is the sequence b = (b1 ≤ · · · ≤ bm) given by the numbers
min Invi (w) − 1, for non-empty Invi (w), arranged in increasing order.

Proposition 13.1 [35], cf. [25] Assume that w ∈ S2143
n is a vexillary permutation.

Let μ be its shape and b be its flag. Then the Schubert polynomial Sw(x) is the
following flagged Schur polynomial: Sw(x) = sb

μ(x).

We remark that not every flagged Schur polynomial is a Schubert polynomial.
Let Cn be the set of partitions μ = (μ1, . . . ,μn), μ1 ≥ · · · ≥ μn ≥ 0, such that

μi ≤ n − i, for i = 1, . . . , n, i.e., Cn is the set of partitions whose Young diagrams
fit inside the staircase shape (n − 1, n − 2, . . . ,0). These partitions are in an obvious
correspondence with Catalan paths. Thus |Cn| = 1

n+1

(2n
n

)
is the Catalan number.

A permutation w is called dominant if code(w) = (c1, . . . , cn) is a partition, i.e.,
c1 ≥ · · · ≥ cn. The next claim is essentially well known; see, e.g., [28].

Proposition 13.2 A permutation w = w1 · · ·wn ∈ Sn is dominant if and only if it is
132-avoiding.

The map w 
→ code(w) is a bijection between the set S132
n of dominant permuta-

tions and the set Cn. We have wi > wi+1 if and only if ci > ci+1, and wi < wi+1 if
and only if ci = ci+1.

For w ∈ S132
n , we have Invi (w) = {k | wk < min{w1, . . . ,wi}} and ci(w) =

min{w1, . . . ,wi} − 1.
The inverse map c 
→ w(c) from Cn to S132

n is given recursively by w1 = c1 + 1
and wi = min{j > ci | j �= w1, . . . ,wi−1}, for i = 2, . . . , n. In particular, if ci < ci−1
then wi = ci + 1.

Proof Let us assume that w is 132-avoiding and show that code(w) is weakly de-
creasing. Indeed, if wi > wi+1 then ci > ci+1. If wi < wi+1 then there is no j > i +1
such that wi < wj < wi+1, because w is 132-avoiding. Thus ci = ci+1 in this case.

On the other hand, assume that w ∈ Sn is not a 132-avoiding permutation. Say
that (i, j, k) is a 132-triple of indices if i < j < k and wi < wk < wj . Let us find
a 132-triple (i, j, k) such that the difference j − i is as small as possible. We argue
that j = i + 1. Otherwise, pick any l such that i < l < j . If wl < wk then (l, j, k)

is a 132-triple, and if wl > wk then (i, l, k) is a 132-triple. Both these triples have
a smaller difference. This shows that we can always find a 132-triple of the form
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(i, i + 1, k). Then ci(w) < ci+1(w). Thus code(w) is not weakly decreasing. This
proves that w 
→ code(w) is a bijection between S132

n and Cn.
Let w ∈ S132

n . Fix an index i and find 1 ≤ j ≤ i such that wj = min{w1, . . . ,wi}.
Since w is 132-avoiding, there is no k > i such that wi > wk > wj . Thus the condi-
tions k > i, wk < wi imply that wk < wj . On the other hand, if wk < wj for some
k ∈ {1, . . . , n} then k > i because of our choice of j . This shows that the i-th in-
version set of the permutation w is Invi (w) = {k | wk < min{w1, . . . ,wi}}. Thus
ci(w) = |Invi (w)| = min{w1, . . . ,wi} − 1.

Let w ∈ S132
n and code(w) = (c1, . . . , cn). We have w1 = c1 + 1. Let us derive

the identity wi = min{j > ci | j �= w1, . . . ,wi−1}, for i = 2, . . . , n. Indeed, if ci <

ci−1 then wi = ci + 1, as needed. Otherwise, if ci = ci−1, then wi > wi−1. Let k be
the index such that wk = min{j > ci | j �= w1, . . . ,wi−1}. If k �= i then k > i and
wk < wi . Thus wi−1 < wk < wi . This is impossible because we assumed that w is
132-avoiding. �

The following claim is also well known; see, e.g., [28].

Proposition 13.3 For a dominant permutation w ∈ S132
n , the Schubert polynomial is

given by the monomial Sw(x) = x
c1(w)
1 · · ·xcn(w)

n .

This claim follows from Proposition 13.1, because the set of dominant permuta-
tions is a subset of vexillary permutations.

Proof Let μ = code(w) = (k
m1
1 , k

m2
2 , . . .), k1 > k2 > · · ·, be the shape of w. Accord-

ing to Proposition 13.2, the flag of w is b = (m
m1
1 , (m1 + m2)

m2, . . .). For this shape
and flag, there exists only one flagged semistandard Young tableau T = (tij ), which
is given by tij = i. Thus Sw(x) = sb

μ(x) = x
μ1
1 · · ·xμm

n . �

A permutation w is 3412-avoiding if and only if w◦w is vexillary. Also a permu-
tation w is 312-avoiding if and only if w◦w is 132-avoiding. The next claim follows
from Theorem 6.2, Proposition 13.1, and Corollary 13.3.

Theorem 13.4 Let w ∈ S3412
n be a 3412-avoiding permutation. Let μ and b be the

shape and flag of the vexillary permutation w◦w. Then

Dw(y1, . . . , yn) = 1

1!2! · · · (n − 1)! sb
μ(∂/∂y1, . . . , ∂/∂yn) ·

∏

i<j

(yi − yj ).

In particular, for a 312-avoiding permutation w ∈ S312
n and (c1, . . . , cn) =

code(w◦w), we have

Dw(y1, . . . , yn) = 1

1!2! · · · (n − 1)!

(
n∏

k=1

(∂/∂yk)
ck

)

·
∏

i<j

(yi − yj )

= det

((
y

(n−ci−j)
i

)n

i,j=1

)

,
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where a(b) = ab/b!, for b ≥ 0, and a(b) = 0, for b < 0.

Applying Lemma 12.2(1), we obtain the determinant expression for Dw , for 231-
avoiding permutations w, as well.

Corollary 13.5 For a 231-avoiding permutation w ∈ S231
n and (c1, . . . , cn) =

code(ww◦), we have

Dw(y1, . . . , yn) = det

((
(−yn−i+1)

(n−ci−j)
)n

i,j=1

)

.

14 Demazure characters for 312-avoiding permutations

In the previous section we gave a simple determinant formula for the polynomial
Dw , for a 312-avoiding permutation w ∈ S312

n . We remark that 312-avoiding per-
mutations are exactly the Kempf elements that were studied by Lakshmibai in [23].
In this and the following sections, we give some additional nice properties of 312-
avoiding permutations. In this section, we show how Weyl’s character formula can be
easily deduced from Demazure’s character formula by induction on some sequence
of 312-avoiding permutations that interpolates between 1 and w◦.

Let z1, . . . , zn be independent variables, and let Ti , i = 1, . . . , n − 1, be the oper-
ator that acts on the polynomial ring Q[z1, . . . , zn] by

Ti : f (z1, . . . , zn) 
→ zi f (z1, . . . , zn) − zi+1 f (z1, . . . , zi−1, zi+1, zi , zi+2, . . . , zn)

zi − zi+1
.

For λ = (λ1 ≥ · · · ≥ λn) and a reduced decomposition w = si1 · · · sil ∈ Sn, let

chλ,w(z1, . . . , zn) = Ti1 · · ·Til (z
λ1
1 · · · zλn

n ).

The polynomials chλ,w do not depend on choice of reduced decomposition for w

because the Ti satisfy the Coxeter relations. Let us map the ring Q[z1, . . . , zn] to
the group algebra Q[�] of the type An−1 weight lattice � by zi 
→ eωi−ωi−1 , for
i = 1, . . . , n, where we assume that ω0 = ωn = 0. Then the operators Ti specialize
to the Demazure operators (8.1) and the polynomials chλ,w map to the characters of
Demazure modules ch(Vλ,w); cf. the Demazure character formula (8.4). The poly-
nomials chλ,w were studied by Lascoux and Schützenberger [25], who called them
essential polynomials, and by Reiner and Shimozono [30], who called them key poly-
nomials. To avoid confusion, we will call the polynomials chλ,w simply Demazure
characters.

For a given partition λ = (λ1, . . . , λn), the number of nonzero flagged Schur
polynomials sb

λ(z1, . . . , zn) in n variables equals the Catalan number 1
n+1

(2n
n

)
. In-

deed, such a polynomial is nonzero if and only if the flag b = (b1, . . . , bn) satisfies
b1 ≤ · · · ≤ bn ≤ n and bi ≥ i, for i = 1, . . . , n. Let us denote by C̃n the set of such
flags b. The map (b1, . . . , bn) 
→ (c1, . . . , cn) given by ci = n − bi , for i = 1, . . . , n,
is a bijection between the sets C̃n and Cn. The next theorem says that the flagged
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Schur polynomials sb
λ(z1, . . . , zn) are exactly the Demazure characters chλ,w , for

312-avoiding permutations w ∈ Sn.
Recall that the map w 
→ code(w) is a bijection between the sets S132

n and Cn

(see Proposition 13.2). Then the map w 
→ b(w) = (b1, . . . , bn) given by bi =
n − ci(w◦w), for i = 1, . . . , n, is a bijection between the sets S312

n and C̃n. Note
that �(w) = b1 + · · · + bn − (

n+1
2

)
. The inverse map C̃n → S312

n can be described
recursively, as follows: w1 = b1 and wi = max{j | j ≤ bi, j �= w1, . . . ,wi−1}, for
i = 2, . . . , n; cf. Proposition 13.2.

Theorem 14.1 Let w ∈ S312
n be a 312-avoiding permutation. Let b = b(w) be the

corresponding element of C̃n. Let λ = (λ1, . . . , λn) be a partition. Then the Demazure
character chλ,w equals the flagged Schur polynomial:

chλ,w(z1, . . . , zn) = sb
λ(z1, . . . , zn).

This theorem follows from a general result by Reiner and Shimozono [30], who
expressed any flagged skew Schur polynomial as a combination of Demazure char-
acters (key polynomials). Theorem 14.1 implies that every Schubert polynomial Sw ,
for a vexillary permutation w ∈ S2143

n , is equal to some Demazure character chλ,u,
for a certain 312-avoiding permutation u ∈ S312

m , m < n, associated with w. Let us
give a simple proof of Theorem 14.1.

Let b = (b1, . . . , bn) ∈ C̃n. Let us say that k ∈ {1, . . . , n − 1} is an isolated entry in

b if k appears in the sequence b exactly once. Let us write b
k−→b′ if k is an isolated

entry in b and b′ ∈ C̃n is obtained from b by adding 1 to this entry. In other words, we
have bi−1 < bi = k < bi+1, for some i ∈ {1, . . . , n − 1} (assuming that b0 = 0), and
b′ = (b1, . . . , bi−1, bi + 1, bi+1, . . . , bn).

Lemma 14.2 If b
k−→b′, then Tk · sb

λ(z1, . . . , zn) = sb′
λ (z1, . . . , zn).

Proof The claim follows from the formula sb
λ = det(hλi−i+j (z1, . . . , zbi

))ni,j=1, the
fact that the operator Tk commutes with multiplication by hm(x1, . . . , xl) for k �= l;
and Tk · hm(x1, . . . , xk) = hm(x1, . . . , xk+1). �

Let us also write w
k−→w′, for w,w′ ∈ Sn, if w′ = sk w and �(w′) = �(w) + 1.

Lemma 14.3 For w,w′ ∈ S312
n , if b(w)

k−→b(w′) then w
k−→w′.

Proof Assume b(w) = b, b(w′) = b′, and b
k−→b′. Let bi = k be the isolated entry in

b that we increase. The construction of the map b 
→ w implies that wi = k and wj =
k + 1 for some j > i. It also implies that b′ 
→ skw. The permutation skw is obtained

from w by switching wi and wj , and its length is �(w) + 1. Thus w
k−→w′. �

Exercise 14.4 Check that b(w)
k−→b(w′) if and only if w

k−→w′.
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Proof of Theorem 14.1 Let b = b(w) ∈ C̃n. We claim that there is a directed path

b(0) k1−→b(1) k2−→ · · · kl−→b(l) from b(0) = (1, . . . , n) to b(l) = b. In other words, we
can obtain the sequence b from the sequence (1, . . . , n) by repeatedly adding 1’s to
some isolated entries. One possible choice of such a path is given by the following
rule. We have bn = n. Let us first increase the (n − 1)-st entry until we obtain bn−1;
then increase the (n − 2)-nd entry until we obtain bn−2, etc.

For example, for the sequence b = (3,3,3,5,5) that corresponds to w = 32154,
we obtain the path

(1,2,3,4,5)
4−→ (1,2,3,5,5)

2−→ (1,3,3,5,5)
1−→ (2,3,3,5,5)

2−→ (3,3,3,5,5).

This path gives the reduced decomposition s2s1s2s4 for w = 32154.
If w = id then b(w) = (1, . . . , n) and chid,λ = s

(1,...,n)
λ = z

λ1
1 . . . z

λn
n . In gen-

eral, according to Lemmas 14.2 and 14.3, we have w = skl
· · · sk1 , and thus, sb

λ =
Tw(s

(1,...,n)
λ ) = Tw(xλ) = chw,λ. �

Remark 14.5 Lemma 14.3, together with the exercise, gives a bijective correspon-

dence between paths (1, . . . , n)
k1−→ · · · kl−→b(w) and the special class of reduced

decompositions w = skl
· · · sk1 such that all truncated decompositions ski

· · · sk1 give
312-avoiding permutations, for i = 1, . . . , l.

Corollary 14.6 Let us use the notation of Theorem 14.1. The dimension of the De-
mazure module is given by the following matrix of binomial coefficients:

dimVλ,w = det

((
λi + bi − i

bi − j

))n

i,j=1
.

Proof We have dimVλ,w = chλ,w(1, . . . ,1). The claim follows from the determinant
expression (13.1) for the flagged Schur polynomial chλ,w = s

(1,...,n),b
λ and the fact

that h
[k,l]
m (1, . . . ,1) = (l−k+m

l−k

)
. �

Corollary 14.6 presents dimVλ,w as a polynomial of degree
∑

(bi − i) = �(w).
According to Proposition 9.1, the leading homogeneous component of this polyno-
mial equals Dw(λ). Thus Corollary 14.6 produces the same determinant expression

Dw(λ) = det
(
λ

(bi−j)
i

)
for a 312-avoiding permutation w as Theorem 13.4.

Let us give another expression for the Demazure characters chλ,w that generalizes
the Weyl character formula. It is not hard to prove it by induction similar to the above
argument.

Proposition 14.7 Let w ∈ S312
n be a 312-avoiding permutation and let b(w) =

(b1, . . . , bn). Let Wb = {u ∈ Sn | ui ≤ bi, for any i = 1, . . . , n}, and let �+
u,b =

{εi − εj | 1 ≤ i < j ≤ bu−1(i)} ⊆ �+. Then

chλ,w(z1, . . . , zn) =
∑

u∈Wb

(−1)�(u) zu(λ+ρ)−ρ
∏

α∈�+
u,b

(1 − z−α)−1.
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The set Wb is in one-to-one correspondence with rook placements in the Young
diagram of shape (bn, bn−1, . . . , b1). We have |Wb| = b1 (b2 − 1) (b3 − 2) · · · (bn −
n + 1). For any u ∈ Wb, we have |�+

u,b| = �(w).

15 Generalized Gelfand-Tsetlin polytope

In this section we show how flagged Schur functions and Demazure characters are
related to generalized Gelfand-Tsetlin polytopes studied by Kogan [18].

A Gelfand-Tsetlin pattern P of size n is a triangular array of real numbers P =
(pij )n≥i≥j≥1 that satisfy the inequalities pi−1 j−1 ≥ pij ≥ pi−1 j . These patterns are
usually arranged on the plane as follows:

The shape λ = (λ1, . . . , λn) of a Gelfand-Tsetlin pattern P is given by λi = pni , for
i = 1, . . . , n, i.e., the shape is the top row of a pattern. The weight β = (β1, . . . , βn)

of a Gelfand-Tsetlin pattern P is given by β1 = p11 and βi = pi1 +· · ·pii −pi−1 1 −
· · · − pi−1 i−1, for i = 2, . . . , n, i.e., the i-th row sum pi1 + · · · + pii equals β1 +
· · · + βi .

The Gelfand-Tsetlin polytope Pλ ∈ R(n
2) is the set of all Gelfand-Tsetlin patterns

of shape λ. This is a convex polytope. A Gelfand-Tsetlin pattern P = (pij ) is called
integer if all pij are integers. The integer Gelfand-Tsetlin patterns are the lattice
points of the polytope Pλ.

The integer Gelfand-Tsetlin patterns P = (pij ) of shape λ and weight β are in
one-to-one correspondence with semistandard Young tableaux T = (tij ) of shape λ

and weight β . This correspondence is given by setting pij = #{k | tkj ≤ i}, i.e., pij is
the number of entries less than or equal to i in the j -th row of T . The proof of the
following claim is immediate from the definitions.

Lemma 15.1 A semistandard Young tableau T is a flagged tableau with flags
(1, . . . ,1) and (b1, . . . , bn) if and only if the corresponding Gelfand-Tsetlin pattern
P = (pij ) satisfies the conditions pni = pn−1 i = · · · = pbi i , for i = 1, . . . , n.

Let w ∈ S312
n be a 312-avoiding permutation, let b = (b1, . . . , bn) = b(w) ∈ C̃n,

and let λ = (λ1, . . . , λn) be a partition. Let us define the generalized Gelfand-Tsetlin
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polytope Pλ,w as the set of all Gelfand-Tsetlin patterns P = (pij ) of size n such that
λi = pni = pn−1 i = · · · = pbi i , for i = 1, . . . , n. Note that b1 + · · · + bn − (

n+1
2

)=
�(w) is the number of unspecified entries in a pattern. Thus Pλ,w is a convex polytope
naturally embedded into R

�(w). These polytopes were studied by Kogan [18].
According to Theorem 14.1, the Demazure character chλ,w , for a 312-avoiding

permutation w, is given by counting lattice points of the generalized Gelfand-Tsetlin
polytope Pλ,w .

Corollary 15.2 For w ∈ S312
n and a partition λ = (λ1, . . . , λn), we have

chλ,w(z1, . . . , zn) = sb
λ(z1, . . . , zn) =

∑

P∈Pλ,w∩Z�(w)

zP ,

where the sum is over lattice points in the polytope Pλ,w , zP = z
β1
1 · · · zβn

n , and β =
(β1, . . . , βn) is the weight of P . In particular, the dimension of the Demazure module
Vλ,w is equal to the number of lattice points in the polytope Pλ,w:

dimVλ,w = #(Pλ,w ∩ Z
�(w)).

Finally, the λ-degree of the Schubert variety Xw divided by �(w)! equals the volume
of the generalized Gelfand-Tsetlin polytope Pλ,w:

1

�(w)! degλ(Xw) = Dw(λ) = Vol(Pλ,w),

where Vol denotes the usual volume form on R
�(w) such that the volume of the unit

�(w)-hypercube equals 1.

The following claim is also straightforward from the definition of the polytopes
Pλ,w .

Proposition 15.3 The polytope Pλ,w is the Minkowski sum of the polytopes Pωi,w

for the fundamental weights:

Pλ,w = a1 Pω1,w + · · · + an−1 Pωn−1,w,

where λ = a1ω1 + · · · + an−1ωn−1.

The last claim implies that dimVλ,w is the mixed lattice point enumerator of the
polytopes Pωi,w , i = 1, . . . , n − 1.

Remark 15.4 Toric degenerations of Schubert varieties Xw for Kempf elements (312-
avoiding permutations in our terminology), were constructed by Gonciulea and Lak-
shmibai [14], and were studied by Kogan [18] and Kogan-Miller [19]. According
to [18, 19], these toric degenerations are associated with generalized Gelfand-Tsetlin
polytopes Pλ,w . It is a standard fact that the degree of a toric variety is equal to the
normalized volume of the corresponding polytope.
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Remark 15.5 We can extend the definition of generalized Gelfand-Tsetlin polytopes
Pw,λ to a larger class of permutations, as follows. For a 231-avoiding permutation
w, define Pw,λ = Pw◦ww◦, (−λn,...,−λ1), cf. Lemma 12.2(1). Let w = w1 × · · · × wk ∈
Sn1 × · · · × Snk

⊂ Sn be a permutation such that all blocks wi ∈ Sni
are either 312-

avoiding or 231-avoiding, and let λ be the concatenation of partitions λ1, . . . , λk of
lengths n1, . . . , nk . We have ch(Vλ,w) =∏ ch(Vλi ,wi ) and Dw(λ) =∏Dwi (λi). Let
us define Pw,λ = Pw1, λ1 × · · · × Pwk,λk . Then Corollary 15.2 and Proposition 15.3
remain valid for this more general class of permutations with 312- or 231-avoiding
blocks. These claims extend results of Dehy and Yu [7].

16 A conjectured value of Dw

In this section we give a conjectured value of Dw for a special class of permuta-
tions w.

Let w be a permutation whose code has the form

code(w) = (n,∗, n − 1,∗, n − 2, · · · ,∗,2,∗,1,0,0, . . .),

where each ∗ is either 0 or empty. We call such a permutation special. For instance,
w = 761829543 is special, with code(w) = (6,5,0,4,0,3,2,1,0, . . .). Note also that
w◦ is special. Suppose that w is special with code(w) = (c1, c2, . . .). Let c1 = n,
and let k be the number of 0’s in code(w) that are preceded by a nonzero number,
i.e, ci = 0, ci−1 > 0. Let a1 < · · · < ak = n + k be the positions of these 0’s, so
ca1 = · · · = cak

= 0. Define

aδ(y1, . . . , yn) =
∏

1≤i<j≤n

(yi − yj )

=
∑

w∈Sn

(−1)�(w) y
w(1)−1
1 · · ·yw(n)−1

n .

An n-element subset J = {j1, . . . , jn} of {1,2, . . . , n + k} is said to be valid (with
respect to w) if

#(J ∩ {ai−1 + 1, ai−1 + 2, . . . , ai}) = ai − ai−1 − 1

for 1 ≤ i ≤ k (where we set a0 = 0). For instance if code(w) = (3,0,2,1,0), then
the valid sets are 134, 135, 145, 234, 235, 245. Clearly the number of valid sets in
general is equal to (a1 − 1)(a2 − a1 − 1) · · · (ak − ak−1 − 1). If J is a valid set, then
define the sign εJ of J by εJ = (−1)dJ , where

dJ =
(

n + k + 1

2

)

− 1 − (a1 + 1) − · · · − (ak−1 + 1) −
∑

i∈J

i.

Note that the quantity
(
n+k+1

2

)− 1 − (a1 + 1) − · · · − (ak−1 + 1) appearing above is
just

∑
i∈L i for the valid subset L with largest element sum, viz.,

L = {1,2, . . . , n + k} − {1, a1 + 1, a2 + 1, . . . , ak−1 + 1}.
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In particular, dL = 0 and εL = 1.

Conjecture 16.1 Let w be special as above. Then

Dw = Cnk

∑

J={j1,...,jk}
εJ aδ(yn+k−j1+1, yn+k−j2+1, . . . , yn+k−jk+1),

where

Cnk = (n + 1)! (n + 2)! · · · (n + k − 1)!
(
n+1

2

)!
and J ranges over all valid subsets of {1,2, . . . , n + k}.

As an example of Conjecture 16.1, let w = 41532, so code(w) = (3,0,2,1,0).
Write y1 = a, y2 = b, etc. Then

Dw = 1

30
(aδ(a, b, d) − aδ(a, b, e) − aδ(a, c, d) + aδ(a, c, e)

+ aδ(b, c, d) − aδ(b, c, e)).

We have verified Conjecture 16.1 for n ≤ 5.

17 Schubert-Kostka matrix and its inverse

In this section we discuss the following three equivalent problems:

(1) Express the polynomials Dw as linear combinations of monomials.
(2) Express monomials as linear combinations of Schubert polynomials Sw .
(3) Express Schubert polynomials as linear combination of standard elementary

monomials ea1(x1)ea2(x1, x2)ea3(x1, x2, x3) · · ·.
Let N

∞ be the set of “infinite compositions” a = (a1, a2, . . .) such that all ai ∈
N = Z≥0 and ai = 0, for almost all i’s. For a ∈ N

∞, let xa = x
a1
1 x

a2
2 · · · and y(a) =

y
a1
1

a1!
y

a2
2

a2! · · ·. The polynomial ring Q[x1, x2, . . .] in infinitely many variables has the
linear bases {xa}a∈N∞ and {Sw}w∈S∞ ; also the polynomial ring Q[y1, y2, . . .] has
the linear basis {y(a)}a∈N∞ and {Dw}w∈S∞ , where Sw = Sw(x1, x2, . . .) and Dw =
Dw(y1, y2, . . .).

Let us define the Schubert-Kostka matrix K = (Kw,a), w ∈ S∞ and a ∈ N
∞, by

Sw =
∑

a∈N∞
Kw,a xa.

The numbers Kw,a are nonnegative integers. They can be combinatorially interpreted
in terms of RC-graphs; see [11] and [3]. For grassmannian permutations w, the num-
bers Kw,a are equal to the usual Kostka numbers, which are the coefficients of mono-
mials in Schur polynomials.
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The matrix K is invertible, because every monomial xa can be expressed as a finite
linear combination of Schubert polynomials. Let K−1 = (K−1

a,w) be the inverse of the
Schubert-Kostka matrix. We have

xa =
∑

w∈S∞
K−1

a,w Sw.

The basis {xa}a∈N∞ is D-dual to {y(a)}a∈N∞ , and the basis {Sw}w∈S∞ is D-dual to
{Dw}w∈S∞ ; see Corollary 6.1. Thus the previous two formulas are equivalent to the
following statement.

Proposition 17.1 We have

y(a) =
∑

w∈S∞
Kw,a Dw and, equivalently, Dw =

∑

a∈N∞
K−1

a,w y(a).

This claim shows that an explicit expression for the polynomials Dw in terms
of monomials is equivalent to a formula for entries of the inverse Schubert-Kostka
matrix K−1. We remark that a combinatorial interpretation of the inverse of the
usual Kostka matrix was given by Egecioglu and Remmel [15]. It would be in-
teresting to give a subtraction-free combinatorial interpretation for entries of the
inverse of the Schubert-Kostka matrix. Notice that the matrix K−1 has both pos-
itive and negative entries. Although we do not know such a formula in gen-
eral, it is not hard to give an alternating formula for the entries of K−1, as fol-
lows.

Let us fix a positive integer n. Let w◦ be the longest permutation in Sn, let N
n be

the set of compositions a = (a1, . . . , an), ai ∈ N, naturally embedded into N
∞, and

let ρ = (n − 1, n − 2, . . . ,0) ∈ N
n.

Lemma 17.2 If w ∈ Sn, then K−1
a,w = 0, unless a ∈ N

n.

Proof Follows from Proposition 17.1 and the fact that Dw involves only y1, . . . , yn,
for w ∈ Sn. �

Assume by convention that Kw,a = 0 if some entries ai are negative.

Proposition 17.3 Assume that w ∈ Sn. Then, for any a ∈ N
n, we have

K−1
a,w =

∑

u∈Sn

(−1)�(u) Kw◦w,u(ρ)−a.

Proof By Corollary 12.1(2), we have

Dw = Did,w = Sw◦w(∂/∂y1, · · · , ∂/∂yn) · Dw◦(y1, . . . , yn)
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=
(
∑

b∈Nn

Kw◦w,b

∏

i

(∂/∂y)bi

)⎛

⎝
∑

u∈Sn

(−1)�(u) y(u(ρ))

⎞

⎠

=
∑

b∈Nn,u∈Sn

(−1)�(u) Kw◦w,b y(u(ρ)−b).

By Proposition 17.1, K−1
a,w is the coefficient of y(a) in Dw . Thus K−1

a,w is given by the
sum of the terms in the above expression with b = u(ρ) − a. �

For a 312-avoiding permutation w, Proposition 17.3 implies a more explicit ex-
pression for K−1

a,w . Indeed, in this case, Sw◦w = xc , where c = code(w◦w). In other
words, Kw◦w,u(ρ)−a equals 1, if u(ρ) − a = c, and 0, otherwise. We obtain the fol-
lowing result.

Corollary 17.4 For a 312-avoiding permutation w ∈ S312
n with c = code(w◦w), and

an arbitrary a = (a1, . . . , an) ∈ N
n, we have

K−1
a,w =

{
(−1)�(u) if a + c = u(ρ), for some permutation u ∈ Sn,

0 otherwise.

Note that this expression for K−1
a,w is stable under the embedding Sn ↪→ Sn+1.

More generally, we can give an expression for K−1
a,w , for any 3412-avoiding per-

mutation w, as a sum over flagged semistandard tableaux; cf. Theorem 13.4. Also
Conjecture 16.1 implies a conjecture for values K−1

a,w , for special permutations w, as
defined in Section 16.

Recall that the involution yi 
→ −yn+1−i sends Dw to Dw◦ww◦ (see Lemma 12.2).
If w ∈ Sn, then the second identity in Proposition 17.1 involves only terms with
a ∈ N

n. Applying the above involution to this identity, we deduce that the inverse
Schubert-Kostka matrix has the following symmetry.

Lemma 17.5 For any w ∈ Sn and a = (a1, . . . , an) ∈ N
n, we have

K−1
a,w = (−1)|a|K−1

ā,w◦w w◦,

where |a| = a1 + · · · + an and ā = (an, . . . , a1).

Remark 17.6 The matrix K does not have this kind of symmetry. For example,
Ss1 = x1 and Ssn−1 = x1 +· · ·+xn−1 �= −x1. Thus Ks1,(1 0n−1) = 1 and Kw◦s1w◦,(0n−11)

= 0. An argument similar to the above does not work for matrix K , because the first
identity in Proposition 17.1 may involve terms with w ∈ S∞ \ Sn even if a ∈ N

n.

Applying this symmetry to Corollary 17.4, we obtain an explicit expression for
K−1

a,w , for 231-avoiding permutations w, as well.
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Corollary 17.7 For a 231-avoiding permutation w ∈ S231
n with code(w w◦) =

(c1, . . . , cn) and an arbitrary a = (a1, . . . , an) ∈ N
n, we have

K−1
a,w =

{
(−1)�(u)+|a| if (c1 + an, . . . , cn + a1) = u(ρ), for some u ∈ Sn,

0 otherwise.

Say that a permutation w is strictly dominant if its code code(w) = (c1, . . . , cn)

is a strict partition, i.e., c1 > c2 > · · · > ck = ck+1 = · · · = cn = 0, for some k =
1, . . . , n.

Exercise 17.8 (A) Show that the following conditions are equivalent:

(1) w is strictly dominant;
(2) ww◦ is strictly dominant;
(3) w is of the form w1 > w2 > · · · > wk < wk+1 < · · · < wn;
(4) w is both 132-avoiding and 231-avoiding.

(B) There are exactly 2n−1 strictly dominant permutations in Sn.
(C) If w is strictly dominant with code(w) = (c1 > · · · > ck−1 > 0 = · · · = 0),

then code(ww◦) = (c′
1 > · · · > c′

n−k > 0 = · · · = 0), where the set {c′
1, . . . , c

′
n−k} is

the complement to the set {c1, . . . , ck−1} in {1, . . . , n − 1}.

Let us specialize Corollary 17.7 to strictly dominant permutations.

Corollary 17.9 Let w be a strictly dominant permutation with code(w) = (c1 >

· · · > ck−1 > ck = · · · = 0). Assume that a = (a1, . . . , ak,0, . . . ,0). Then

K−1
a,w =

{
(−1)�(σ ) if (a1, . . . , ak) = (cσ1, . . . , cσk

), for some σ ∈ Sk,

0 otherwise.

Equivalently, we have Dw(y1, . . . , yk,0, . . . ,0) =∑σ∈Sk
(−1)�(σ ) y

(c1)
σ1 · · ·y(ck)

σk
.

Proof We have code(ww◦) = (c′
1 > · · · > c′

n−k > 0 = · · · = 0), where {c′
1, . . . , c

′
n−k}

is the set complement {0, . . . , n − 1} \ {c1, . . . , ck}. According to Corollary 17.7,
K−1

a,w = 0, unless c′
1, . . . , c

′
n−k, ak, . . . , a1 is a permutation of 0, . . . , n − 1; or, equiv-

alently, a1, . . . , ak is a permutation of c1, . . . , ck . We leave it as an exercise for the
reader to check that the signs agree. �

According to Lemma 17.2, for the strictly dominant permutation w = (k, k −
1, . . . ,1, k + 1, k + 2, . . . , n) ∈ Sk ⊂ Sn, the assertion of Corollary 17.9 is true
for an arbitrary a, without the assumption that a = (a1, . . . , ak,0, . . . ,0). How-
ever, if we skip this assumption, for other permutations, we will have more cases.
For example, for w = (k + 1, k − 1, . . . ,1, k, k + 2, k + 3, . . . , n) with code(w) =
(k, k − 2, . . . ,1,0, . . . ,0), Corollary 17.7 implies that

K−1
a,w =

⎧
⎨

⎩

(−1)�(σ ) if a = (cσ1, . . . , cσk
,0, . . . ,0), for some σ ∈ Sk ,

(−1)�(τ)+1 if a = (k − τ1, . . . , k − τk,1, . . . ,0), for some τ ∈ Sk ,

0 otherwise.
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The polynomial ring Q[x1, x2, . . .] has the following basis of standard elementary
monomials: ea := ea2(x1) ea3(x1, x2) ea4(x1, x2, x3) · · ·, where a = (a1, a2, . . .) ∈
N

∞ such that 0 ≤ ai ≤ i − 1, for i = 1,2, . . .. This basis was originally introduced by
Lascoux and Schützenberger [25]; see also [10, Proposition 3.3].

Remark 17.10 Expressions for Schubert polynomials in the basis of standard elemen-
tary monomials play an important role in calculation of Gromov-Witten invariants for
the small quantum cohomology ring of the flag manifold; see [10].

The Cauchy formula (Lascoux [24], see also, e.g., [28])

∑

w∈Sn

Sw(x) · Sww◦(y) =
∏

i+j≤n

(xi + yj ) =
n−1∏

k=1

k∑

i=0

yk−i
n−kei(x1, . . . , xk)

implies that

ew◦(ρ−a) =
∑

w∈Sn

Kw,a Sww◦,

for a ∈ N
n. Equivalently,

Sww◦ =
∑

a

K−1
a,w ew◦(ρ−a).

This shows that the problem of inverting the Schubert-Kostka matrix is equivalent to
the problem of expressing a Schubert polynomial in the basis of standard elementary
monomials.

Let us assume, by convention, that ea = 0, unless 0 ≤ ai ≤ i − 1, for i ≥ 1. Propo-
sition 17.3 implies the following claim.

Corollary 17.11 For w ∈ Sn, the Schubert polynomial Sw can be expressed as

Sw =
∑

u∈Sn, a∈Nn

(−1)�(u)Kw◦ww◦,w◦(a)+u(ρ)−ρ ea.

In particular, for 213-avoiding permutations, we obtain the following result.

Corollary 17.12 For a 213-avoiding permutation w ∈ Sn and c = code(w◦ww◦),
the Schubert Sw polynomial can be expressed as

Sw =
∑

u∈Sn−1

(−1)�(u) ew◦(c+ρ−u(ρ)).

Let us also give a (not very difficult) alternating expression for the generalized
Littlewood-Richardson coefficients.
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Corollary 17.13 Let u,v,w ∈ Sn. Then the generalized Littlewood-Richardson co-
efficient cu,v,w is equal to

cu,v,w =
∑

a,b

Ku,a Kv,b K−1
a+b,w◦w =

∑

z,a,b,c

(−1)�(z)Ku,a Kv,b Kw,c,

where the second sum is over permutations z ∈ Sn and compositions a, b, c ∈ N
n such

that a + b + c = z(ρ).

Proof We have Su ·Sv =∑a,b Ku,a Kv,b xa+b =∑a,b,w Ku,a Kv,b K−1
a+b,w◦w Sw◦w ,

which implies the first claim. Now apply Proposition 17.3. �

Let us identify the polynomial rings Q[x1, x2, . . .] = Q[y1, y2, . . .]. The transition
matrix between the bases {Sw} and {xa} is K ; the transition matrix between the bases
{xa} and {x(a)} is the diagonal matrix D with products of factorials; and the transition
matrix between the bases {x(a)} and {Dw} is KT . Thus the transition matrix between
the bases {Sw} and {Du} is KDKT . In other words, we obtain the following result.

Corollary 17.14 We have Su =∑w∈S∞ Lu,w Dw , where

Lu,w =
∑

a∈N∞
Ku,a Kw,a a1!a2! · · · = (Su,Su)D.

Notice that the matrix L is symmetric, i.e., the coefficient of Dw in Su equals the
coefficient of Du in Sw .

18 Parking functions

Let n = r + 1. Assume that w = (1,2, . . . , r + 1) = s1s2 · · · sr ∈ Sr+1 is the long
cycle. In this section we calculate the corresponding polynomial Dr = Ds1...sr in five
different ways.

Let us use the coordinates Yi = (y,α∨
i ), i = 1, . . . , r , from Section 7. These

coordinates are related to the coordinates y1, . . . , yr+1 from Section 12 by Yi =
yi − yi+1, for i = 1, . . . , r . In the notation of Corollary 7.2, for w = s1 · · · sr , we
have (i1, . . . , il) = (1, . . . , r), and the Cartan integer aipiq is −1, if q = p + 1, and
0, if q > p + 1. Thus the sum in Corollary 7.2 involves only terms corresponding to
arrays (kpq) with kpq = 0, unless q = p + 1. In this case, the product

∏
kpq ! cancels

with the product
∏

K∗s !. More explicitly, Corollary 7.2 gives

Dr =
∑

c1,...,cr

Y
c1
1

c1! · · · Y
cr
r

cr ! ,

where the sum is over nonnegative integer sequence (c1, . . . , cr ) such that c1 ≤ 1,

c1 + c2 ≤ 2, c1 + c2 + c3 ≤ 3,. . . , c1 + · · · + cr−1 ≤ r − 1, c1 + · · · + cr = r . There
are exactly the Catalan number 1

r+1

(2r
r

)
of such sequences.
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A parking function of length r is a sequence of positive integers (b1, . . . , br ),
1 ≤ bi ≤ r , such that #{i | bi ≤ k} ≥ k, for k = 1, . . . , r . The number of parking
functions of length r equals (r +1)r−1. Recall that the number (r +1)r−1 also equals
the number of spanning trees in the complete graph Kr+1. Let us define the r-th
parking polynomial by

Pr(Y1, . . . , Yr ) =
∑

(b1,...,br )

Yb1 · · ·Ybr ,

where the sum is over parking functions (b1, . . . , br ) of length r . For example,

P3 = 6Y1Y2Y3 + 3Y 2
1 Y2 + 3Y1Y

2
2 + 3Y 2

1 Y3 + Y 3
1 .

The polynomial 1
r!Pr(Y1, . . . , Yr ) appeared in [29] as the volume of a certain poly-

tope; see Corollary 18.7 below. According to [29], for a partition λ = (λ1, . . . , λr+1),
the value Pr(λ1 − λ2, λ2 − λ3, . . . , λr − λr+1) equals the number of λ-parking func-
tions, which generalize the usual parking functions.

We can write the above expression for Dr in terms of the parking polynomial.

Proposition 18.1 We have Dr = 1
r! Pr(Yr , . . . , Y2, Y1). In particular, the degree of

the Schubert variety Xs1...sr equals the number of trees

deg(Xs1···sr ) = Pr(1, . . . ,1) = (r + 1)r−1.

Remark 18.2 Proposition 18.1 is true for an arbitrary Weyl group W and w =
si1 · · · sir ∈ W such that (α∨

ip
, αip+1) = 1 and (α∨

ip
, αiq ) = 0, for q > p + 1; see Corol-

lary 7.2.

Remark 18.3 Let us weight the covering relation u � usij , i < j , in the Bruhat order
on Sr+1 by j − i. According to Proposition 18.1, the weighted sum over saturated
chains from id to s1 · · · sr equals the number (r + 1)r−1 of trees. Compare this with
the fact that the total number of decompositions of the cycle s1 · · · sr into a product
of r transpositions also equals (r + 1)r−1.

Let us write the polynomial Dr = Dr (y1, . . . , yr+1) in terms of the variables
y1, . . . , yr+1. According to Corollary 12.1(3), the polynomial Dr is recursively given
by the integration Dr = Ir (Dr−1). In other words,

Dr (y1, . . . , yr+1) =
∫ yr

yr+1

Dr−1(y1, . . . , yr−1, t) dt. (18.1)

Dr (y1, . . . , yr+1) =
∫ yr

yr+1

dtr

∫ yr−1

tr

dtr−1 · · ·
∫ y2

t3

dt2

∫ y1

t2

dt1. (18.2)

Equivalent integral formulas for the parking polynomials were given by Kung and
Yan [22]. The right-hand side of the second formula is easily seen to be equal to the
volume of the polytope from [29], see below.
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The long cycle w = s1 · · · sr is a 312-avoiding permutation in Sr+1. The code of
the permutation w◦w equals code(w◦w) = (r − 1, r − 2, . . . ,1,0,0). According to
Theorem 13.4, the polynomial Dr is given by the determinant of the following almost
lower-triangular (r + 1) × (r + 1)-matrix:

Dr (y1, . . . , yr+1) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y1 1 0 · · · 0 0
y

(2)
2 y2 1 · · · 0 0

y
(3)
3 y

(2)
3 y3 · · · 0 0

...
...

...
. . .

...
...

y
(r)
r y

(r−1)
r y

(r−2)
r · · · yr 1

y
(r)
r+1 y

(r−1)
r+1 y

(r−2)
r+1 · · · yr+1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(18.3)

where, as before, y
(a)
i = ya

i

a! .

Remark 18.4 Determinant (18.3) is closely related to the formula found by Steck
[33] and Gessel [12] that can be written in our notation as

Dr (y1, . . . , yr ,0) = det
(
y

(j−i+1)
i

)r

i,j=1
. (18.4)

Since Dr (y1 + c, . . . , yr+1 + c) = Dr (y1, . . . , yr+1), expression (18.4) defines the
polynomial Dr . Expression (18.4) is obtained from (18.3) by setting yr+1 = 0. On
the other hand, we can obtain expression (18.3) for Dr−1 by differentiating (18.4)
with respect to yr . This implies that

Dr−1(y1, . . . , yr ) = ∂

∂yr

Dr (y1, . . . , yr ,0),

which is equivalent to (18.1). Kung and Yan [22, Sect. 3] derived this expression in
terms of Gonc̆arov polynomials.

Expanding the determinant (18.3), we obtain the following result.

Proposition 18.5 We have

Dr =
∑

(−1)r+1−k y
(i1)
i1

y
(i2)
i1+i2

· · ·y(ik−1)

i1+···+ik−1
y

(ik−1)
i1+···+ik

,

where the sum is over 2r+1 sequences (i1, . . . , ik) such that i1, . . . , ik ≥ 1 and i1 +
· · · + ik = r + 1. (Notice that the power of the last term is decreased by 1.)

Corollary 18.6 For a ∈ N
r+1, the element K−1

a, s1···sr of the inverse Schubert-Kostka
matrix equals (−1)r+1−k , if the sequence (a1, . . . , ar , ar+1 + 1) is the concatena-
tion of k sequences of the form (0, . . . ,0, l) with l − 1 zeros, for l ≥ 1; otherwise
K−1

a, s1···sr = 0.

For example, we have K−1
(1,0,0,3,0,2,1,0,0,2), s1···s9

= (−1)10−5.
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The generalized Gelfand-Tsetlin polytope Pλ,w from Section 15, for the 312-
avoiding permutation w = s1 · · · sr , is given by the inequalities:

Pλ,s1···sr = {(t1, . . . , tr ) ∈ R
r | λi ≥ ti , for i = 1, . . . , r; t1 ≥ t2 ≥ · · · ≥ tr ≥ λr+1}.

This polytope is exactly the polytope studied in [29]. According to Corollary 15.2,
Dr (λ) equals the volume of the polytope Pλ,s1···sr . Also, as we already mentioned,
this volume equals the right-hand side of (18.2), for (y1, . . . , yr+1) = (λ1, . . . , λr+1).
We recover the following result from [29] about the relation of this polytope with the
parking polynomial Pr .

Corollary 18.7 We have Vol(Pλ,s1···sr ) = 1
r!Pr(Yr , . . . , Y1), where Yi = λi − λi+1,

for i = 1, . . . , r .

Let us also calculate the polynomial Dr using just its definition in terms of satu-
rated chains in the Bruhat order.

For an arbitrary Weyl group W and w = si1 · · · sil ∈ W with distinct i1, . . . , il , the
interval [id,w] ⊂ W in the Bruhat order consists of the elements u = sj1 · · · sjs such
that j1, . . . , js is a subword of i1, . . . , il ; see Section 2. Thus the interval [id,w] is
isomorphic to the Boolean lattice of order l.

In particular, this is true for the long cycle w = s1 · · · sr = (1, . . . , r + 1) in
Sr+1. The elements u covered by w are of the form u = s1 · · · ŝk · · · sr = w sk,r+1 =
(1,2, . . . , k)(k + 1, k + 2, . . . , r + 1), for some k ∈ {1, . . . , r}. Moreover, for such u,
the Chevalley multiplicity equals m(u � w) = yk − yr+1 = Yk + Yk+1 + · · · + Yr .
The interval [id, (1, . . . , k)(k + 1, . . . , r + 1)] in the Bruhat order is isomorphic to
the product of two intervals [id, (1, . . . , k)]× [id, (k + 1, . . . , r + 1)]. Thus we obtain
the following recurrence relation for the parking polynomial Pr (related to Dr by
Proposition 18.1):

Pr(Y1, . . . , Yr ) =
r∑

k=1

(Y1 + · · · + Yk) · Pk−1(Y1, . . . , Yk−1) · Pr−k(Yk+1, . . . , Yr ).

Also P0 = 1 and P1(Y1) = Y1. This relation follows from results of Kreweras [21].
It implies the following combinatorial interpretation of the parking polynomial
Pr(Y1, . . . , Yr ).

An increasing binary tree is a directed rooted tree with an increasing labeling of
vertices by the integers 1, . . . , r such that each vertex has at most one left successor
and at most one right successor. Let Tr be the set of such trees with r vertices. It is
well known that |Tr | = r!; see [31]. Let us define the weight of a tree in Tr as follows.
For T ∈ Tr , let T̃ be the binary tree obtained from T by adding two leaves (left and
right) to each vertex of T without successors and one left (resp., right) leaf to each
vertex of T with only a right (resp., left) successor. Then T̃ has r + 1 leaves. Let us
label these leaves by the variables Y1, . . . , Yr+1 from left to right. For each vertex v in
T , define the weight wt(v) as the sum of Yi ’s corresponding to all leaves of T̃ in the
left branch of v. Let us define the weight of T ∈ Tr as the product wt(T ) =∏

wt(v)

over all vertices v of T .
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Fig. 2 A tree in T4 of weight
(Y1 + Y2)Y1 (Y3 + Y4)Y3

Figure 2 shows an example of a tree T ∈ T4 of weight wt(T ) = (Y1 +Y2)Y1 (Y3 +
Y4)Y3. The vertices of T are shown by black circles, and the added leaves of T̃ are
shown by white circles. The above recurrence relation for Pr implies the following
result.

Proposition 18.8 The parking polynomial Pr equals the sum

Pr(Y1, . . . , Yr ) =
∑

T ∈Tr

wt(T ).

Acknowledgements We thank V. Lakshmibai for helpful discussions and Arun Ram for help with ref-
erences.
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