Specht filtrations and tensor spaces for the Brauer algebra
Jun Hu
Beijing Institute of Technology Department of Applied Mathematics Beijing 100081 China
DOI: 10.1007/s10801-007-0103-2
Abstract
Let m, n\in \Bbb N. In this paper we study the right permutation action of the symmetric group \mathfrak S 2 n \mathfrak{S}_{2n} on the set of all the Brauer n-diagrams. A new basis for the free \Bbb Z-module \mathfrak B n \mathfrak {B}_{n} spanned by these Brauer n-diagrams is constructed, which yields Specht filtrations for \mathfrak B n \mathfrak {B}_{n} . For any 2 m-dimensional vector space V over a field of arbitrary characteristic, we give an explicit and characteristic-free description of the annihilator of the n-tensor space V \otimes n in the Brauer algebra \mathfrak B n( -2 m) \mathfrak {B}_{n}(-2m) . In particular, we show that it is a \mathfrak S 2 n \mathfrak{S}_{2n} -submodule of \mathfrak B n( -2 m) \mathfrak {B}_{n}(-2m) .
Pages: 281–312
Keywords: keywords Brauer algebra; symmetric group; tensor space
Full Text: PDF
References
1. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Wesley, Reading (1969)
2. Brauer, R.: On algebras which are connected with semisimple continuous groups. Ann. Math. 38, 857-872 (1937)
3. Brown, W.P.: An algebra related to the orthogonal group. Michigan Math. J. 3, 1-22 (1955-1956)
4. Brown, W.P.: The semisimplicity of ωn . Ann. Math. 63, 324-335 (1956) f J Algebr Comb (2008) 28: 281-312
5. Benkart, G., Chakrabarti, M., Halverson, T., Leduc, R., Lee, C., Stroomer, J.: Tensor product representations of general linear groups and their connections with Brauer algebras. J. Algebra 166, 529-567 (1994)
6. Birman, J., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313(1), 249-273 (1989)
7. De Concini, C., Procesi, C.: A characteristic free approach to invariant theory. Adv. Math. 21, 330-354 (1976)
8. Carter, R.W., Lusztig, G.: On the modular representations of general linear and symmetric groups. Math. Z. 136, 193-242 (1974)
9. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)
10. Dipper, R., Doty, S.: The rational Schur algebra. Preprint math.RT/0511663 (2005)
11. Dipper, R., Doty, S., Hu, J.: Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans. Am. Math. Soc. 360, 189-213 (2008)
12. Dipper, R., James, G.D.: Representations of Hecke algebras of general linear groups. Proc. Lond. Math. Soc. 52(3), 20-52 (1986)
13. Dipper, R., James, G.D.: Blocks and idempotents of Hecke algebras of general linear groups. Proc. Lond. Math. Soc. 54(3), 57-82 (1987)
14. Du, J., Parshall, B., Scott, L.: Quantum Weyl reciprocity and tilting modules. Commun. Math. Phys. 195, 321-352 (1998)
15. Doty, S.: Polynomial representations, algebraic monoids, and Schur algebras of classic type. J. Pure Appl. Algebra 123, 165-199 (1998)
16. Enyang, J.: Cellular bases for the Brauer and Birman-Murakami-Wenzl algebras. J. Algebra 281, 413-449 (2004)
17. Fishel, S., Grojnowski, I.: Canonical bases for the Brauer centralizer algebra. Math. Res. Lett. 2(1), 15-26 (1995)
18. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1-34 (1996)
19. Grigor'ev, D.Ju.: An analogue of the Bruhat decomposition for the closure of the cone of a Chevalley group of the classical series. Sov. Math. Dokl. 23, 393-397 (1981)
20. Härterich, M.: Murphy bases of generalized Temperley-Lieb algebras. Arch. Math. 72(5), 337-345 (1999)
21. Hu, J.: Quasi-parabolic subgroups of the Weyl group of type D. Eur. J. Comb. 28(3), 807-821 (2007)
22. Hanlon, P., Wales, D.B.: On the decomposition of Brauer's centralizer algebras. J. Algebra 121, 409- 445 (1989)
23. Hanlon, P., Wales, D.B.: Eigenvalues connected with Brauer's centralizer algebras. J. Algebra 121, 446-475 (1989)
24. Jimbo, M.: A q-analogue of U (gl(N + 1)), Hecke algebras, and Yang-Baxter equation. Lett. Math. Phys. 11, 247-252 (1986)
25. Künzer, M., Mathas, A.: Elementary divisors of Specht modules. Eur. J. Comb. 26, 943-964 (2005)
26. Koike, K., Terada, I.: Young-diagrammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn. J. Algebra 107, 466-511 (1987)
27. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs. Clarendon Oxford University Press, New York (1979)
28. Mathas, A.: Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, University Lecture Series, vol.
15. American Mathematical Society, Providence, R.I. (1999)
29. Murakami, J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 26(4), 745-758 (1987)
30. Murphy, E.: On the representation theory of the symmetric groups and associated Hecke algebras.
2. Brauer, R.: On algebras which are connected with semisimple continuous groups. Ann. Math. 38, 857-872 (1937)
3. Brown, W.P.: An algebra related to the orthogonal group. Michigan Math. J. 3, 1-22 (1955-1956)
4. Brown, W.P.: The semisimplicity of ωn . Ann. Math. 63, 324-335 (1956) f J Algebr Comb (2008) 28: 281-312
5. Benkart, G., Chakrabarti, M., Halverson, T., Leduc, R., Lee, C., Stroomer, J.: Tensor product representations of general linear groups and their connections with Brauer algebras. J. Algebra 166, 529-567 (1994)
6. Birman, J., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313(1), 249-273 (1989)
7. De Concini, C., Procesi, C.: A characteristic free approach to invariant theory. Adv. Math. 21, 330-354 (1976)
8. Carter, R.W., Lusztig, G.: On the modular representations of general linear and symmetric groups. Math. Z. 136, 193-242 (1974)
9. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)
10. Dipper, R., Doty, S.: The rational Schur algebra. Preprint math.RT/0511663 (2005)
11. Dipper, R., Doty, S., Hu, J.: Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans. Am. Math. Soc. 360, 189-213 (2008)
12. Dipper, R., James, G.D.: Representations of Hecke algebras of general linear groups. Proc. Lond. Math. Soc. 52(3), 20-52 (1986)
13. Dipper, R., James, G.D.: Blocks and idempotents of Hecke algebras of general linear groups. Proc. Lond. Math. Soc. 54(3), 57-82 (1987)
14. Du, J., Parshall, B., Scott, L.: Quantum Weyl reciprocity and tilting modules. Commun. Math. Phys. 195, 321-352 (1998)
15. Doty, S.: Polynomial representations, algebraic monoids, and Schur algebras of classic type. J. Pure Appl. Algebra 123, 165-199 (1998)
16. Enyang, J.: Cellular bases for the Brauer and Birman-Murakami-Wenzl algebras. J. Algebra 281, 413-449 (2004)
17. Fishel, S., Grojnowski, I.: Canonical bases for the Brauer centralizer algebra. Math. Res. Lett. 2(1), 15-26 (1995)
18. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1-34 (1996)
19. Grigor'ev, D.Ju.: An analogue of the Bruhat decomposition for the closure of the cone of a Chevalley group of the classical series. Sov. Math. Dokl. 23, 393-397 (1981)
20. Härterich, M.: Murphy bases of generalized Temperley-Lieb algebras. Arch. Math. 72(5), 337-345 (1999)
21. Hu, J.: Quasi-parabolic subgroups of the Weyl group of type D. Eur. J. Comb. 28(3), 807-821 (2007)
22. Hanlon, P., Wales, D.B.: On the decomposition of Brauer's centralizer algebras. J. Algebra 121, 409- 445 (1989)
23. Hanlon, P., Wales, D.B.: Eigenvalues connected with Brauer's centralizer algebras. J. Algebra 121, 446-475 (1989)
24. Jimbo, M.: A q-analogue of U (gl(N + 1)), Hecke algebras, and Yang-Baxter equation. Lett. Math. Phys. 11, 247-252 (1986)
25. Künzer, M., Mathas, A.: Elementary divisors of Specht modules. Eur. J. Comb. 26, 943-964 (2005)
26. Koike, K., Terada, I.: Young-diagrammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn. J. Algebra 107, 466-511 (1987)
27. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs. Clarendon Oxford University Press, New York (1979)
28. Mathas, A.: Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, University Lecture Series, vol.
15. American Mathematical Society, Providence, R.I. (1999)
29. Murakami, J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 26(4), 745-758 (1987)
30. Murphy, E.: On the representation theory of the symmetric groups and associated Hecke algebras.