Core blocks of Ariki-Koike algebras
Matthew Fayers
University of London Queen Mary Mile End Road London E1 4NS UK
DOI: 10.1007/s10801-006-0048-x
Abstract
We examine blocks of the Ariki-Koike algebra, in an attempt to generalise the combinatorial representation theory of the Iwahori-Hecke algebra of type A. We identify a particular type of combinatorial block, which we call a core block, which may be viewed as an analogue of a simple block of the Iwahori-Hecke algebra. We give equivalent characterisations of core blocks and examine their basic combinatorics.
Pages: 47–81
Keywords: keywords ariki-koike algebra; multipartition; weight
Full Text: PDF
References
1. S. Ariki, “On the classification of simple modules for cyclotomic Hecke algebras of type G(m, 1, n) and Kleshchev multipartitions,” Osaka J. Math. 38 (2001), 827-837.
2. R. Dipper, G.D. James, and A. Mathas, “Cyclotomic q-Schur algebras,” Math. Z. 229 (1998), 385-416.
3. R. Dipper and A. Mathas, “Morita equivalences of Ariki-Koike algebras,” Math. Z. 240 (2002), 579-610.
4. M. Fayers, “Weights of multipartitions and representations of Ariki-Koike algebras,” Adv. Math. 206 (2006), 112-44.
5. J.J. Graham and G.I. Lehrer, “Cellular algebras,” Invent. Math. 123 (1996), 1-34.
6. S. Lyle and A. Mathas, “Blocks of affine and cyclotomic Hecke algebras,” arXiv:math.RT/0607451 (2006).
7. J.C. Scopes, “Cartan matrices and Morita equivalence for blocks of the symmetric groups,” J. Algebra 142 (1991), 441-55.
8. X. Yvonne, “A conjecture for q-decomposition numbers of cyclotomic v-Schur algebras,” arXiv: math.RT/0505379 (2005).
2. R. Dipper, G.D. James, and A. Mathas, “Cyclotomic q-Schur algebras,” Math. Z. 229 (1998), 385-416.
3. R. Dipper and A. Mathas, “Morita equivalences of Ariki-Koike algebras,” Math. Z. 240 (2002), 579-610.
4. M. Fayers, “Weights of multipartitions and representations of Ariki-Koike algebras,” Adv. Math. 206 (2006), 112-44.
5. J.J. Graham and G.I. Lehrer, “Cellular algebras,” Invent. Math. 123 (1996), 1-34.
6. S. Lyle and A. Mathas, “Blocks of affine and cyclotomic Hecke algebras,” arXiv:math.RT/0607451 (2006).
7. J.C. Scopes, “Cartan matrices and Morita equivalence for blocks of the symmetric groups,” J. Algebra 142 (1991), 441-55.
8. X. Yvonne, “A conjecture for q-decomposition numbers of cyclotomic v-Schur algebras,” arXiv: math.RT/0505379 (2005).