Derivation modules of orthogonal duals of hyperplane arrangements
Joseph P.S. Kung1
and Hal Schenck2
1University of North Texas Department of Mathematics Denton TX USA 76203
2Texas A\&M University Department of Mathematics College Station TX USA 77843
2Texas A\&M University Department of Mathematics College Station TX USA 77843
DOI: 10.1007/s10801-006-0023-6
Abstract
Let A be an n \times d matrix having full rank n. An orthogonal dual A \perp of A is a (d-n) \times d matrix of rank ( d - n) such that every row of A \perp is orthogonal (under the usual dot product) to every row of A. We define the orthogonal dual for arrangements by identifying an essential (central) arrangement of d hyperplanes in n-dimensional space with the n \times d matrix of coefficients of the homogeneous linear forms for which the hyperplanes are kernels. When n \geq 5, we show that if the matroid (or the lattice of intersection) of an n-dimensional essential arrangement A {\mathcal A} contains a modular copoint whose complement spans, then the derivation module of the orthogonally dual arrangement A {\mathcal A} \perp has projective dimension at least \lceil n(n+2)/4 \rceil - 3.
Pages: 253–262
Keywords: keywords hyperplane arrangement; module of derivations; projective dimension; matroid; orthogonal duality
Full Text: PDF
References
1. K. Brandt and H. Terao, “Free arrangements and relation spaces,” Discrete Comput. Geom. 12 (1994), 49-63.
2. A.B. Coble, “Associated sets of points,” Trans. Amer. Math. Soc. 24 (1922), 1-20.
3. H.H. Crapo and G.-C. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries. Preliminary edition, M.I.T. Press, Cambridge MA, 1970.
4. H.H. Crapo, “Orthogonality,” in Theory of Matroids, N.L. White (Ed.), Cambridge Univ. Press, Cambridge, 1986, pp. 76-96.
5. I. Dolgachev and M. Kapranov, “Arrangements of hyperplanes and vector bundles on Pn,” Duke Math. J. 71 (1993), 633-664.
6. D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry. Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, Berlin-Heidelberg-New York, 1995.
7. J.P.S. Kung, “Numerically regular hereditary classes of combinatorial geometries,” Geom. Dedicata 21 (1986), 85-105.
8. J.P.S. Kung, “Critical problems,” in Matroid Theory, J.E. Bonin, J.G. Oxley, and B. Servatius, (Eds.) Contemporary Math. Vol. 197, Amer. Math. Soc., Providence RI, 1996, pp. 1-127.
9. P. Orlik and H. Terao, “Arrangements of hyperplanes,” Grundlehren Math. Wiss., Bd. 300, Springer- Verlag, Berlin-Heidelberg-New York, 1992.
10. J.G. Oxley, Matroid Theory, Oxford University Press, Oxford, 1992.
11. L. Rose and H. Terao, “A free resolution for the module of logarithmic forms of a generic arrangement,” J. Algebra 136 (1991), 376-400.
12. R.P. Stanley, “Modular elements of geometric lattices,” Algebra Universalis 1 (1971), 214-217.
13. R.P. Stanley, “Supersolvable lattices,” Algebra Universalis 2 (1972), 197-217.
14. H. Terao, “Generalized exponents of a free arrangement of hyperplanes and Shepard-Todd-Brieskorn formula,” Invent. Math. 63 (1981), 159-179.
15. H. Terao, “On the homological dimensions of arrangements,” Unpublished manuscript, 1990.
16. H. Whitney, “Non-separable and planar graphs,” Trans. Amer. Math. Soc. 34 (1932), 339-362.
17. H. Whitney, “On the abstract properties of linear dependence,” Amer. J. Math. 57 (1935), 509-533.
18. M. Yoshinaga, “Characterization of a free arrangement and conjecture of Edelman and Reiner,” Invent. Math. 157 (2004), 449-454.
19. S. Yuzvinsky, “A free resolution for the module of derivations for generic arrangements,” J. Algebra 136 (1991), 432-438.
20. S. Yuzvinsky, “Cohomology of local sheaves on arrangement lattices,” Proc. Amer. Math. Soc. 112 (1991), 1207-1217.
21. G. Ziegler, “Combinatorial construction of logarithmic differential forms,” Adv. Math. 76 (1989), 116-154.
2. A.B. Coble, “Associated sets of points,” Trans. Amer. Math. Soc. 24 (1922), 1-20.
3. H.H. Crapo and G.-C. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries. Preliminary edition, M.I.T. Press, Cambridge MA, 1970.
4. H.H. Crapo, “Orthogonality,” in Theory of Matroids, N.L. White (Ed.), Cambridge Univ. Press, Cambridge, 1986, pp. 76-96.
5. I. Dolgachev and M. Kapranov, “Arrangements of hyperplanes and vector bundles on Pn,” Duke Math. J. 71 (1993), 633-664.
6. D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry. Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, Berlin-Heidelberg-New York, 1995.
7. J.P.S. Kung, “Numerically regular hereditary classes of combinatorial geometries,” Geom. Dedicata 21 (1986), 85-105.
8. J.P.S. Kung, “Critical problems,” in Matroid Theory, J.E. Bonin, J.G. Oxley, and B. Servatius, (Eds.) Contemporary Math. Vol. 197, Amer. Math. Soc., Providence RI, 1996, pp. 1-127.
9. P. Orlik and H. Terao, “Arrangements of hyperplanes,” Grundlehren Math. Wiss., Bd. 300, Springer- Verlag, Berlin-Heidelberg-New York, 1992.
10. J.G. Oxley, Matroid Theory, Oxford University Press, Oxford, 1992.
11. L. Rose and H. Terao, “A free resolution for the module of logarithmic forms of a generic arrangement,” J. Algebra 136 (1991), 376-400.
12. R.P. Stanley, “Modular elements of geometric lattices,” Algebra Universalis 1 (1971), 214-217.
13. R.P. Stanley, “Supersolvable lattices,” Algebra Universalis 2 (1972), 197-217.
14. H. Terao, “Generalized exponents of a free arrangement of hyperplanes and Shepard-Todd-Brieskorn formula,” Invent. Math. 63 (1981), 159-179.
15. H. Terao, “On the homological dimensions of arrangements,” Unpublished manuscript, 1990.
16. H. Whitney, “Non-separable and planar graphs,” Trans. Amer. Math. Soc. 34 (1932), 339-362.
17. H. Whitney, “On the abstract properties of linear dependence,” Amer. J. Math. 57 (1935), 509-533.
18. M. Yoshinaga, “Characterization of a free arrangement and conjecture of Edelman and Reiner,” Invent. Math. 157 (2004), 449-454.
19. S. Yuzvinsky, “A free resolution for the module of derivations for generic arrangements,” J. Algebra 136 (1991), 432-438.
20. S. Yuzvinsky, “Cohomology of local sheaves on arrangement lattices,” Proc. Amer. Math. Soc. 112 (1991), 1207-1217.
21. G. Ziegler, “Combinatorial construction of logarithmic differential forms,” Adv. Math. 76 (1989), 116-154.