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Abstract Let A be an n × d matrix having full rank n. An orthogonal dual A⊥ of A is a
(d − n) × d matrix of rank (d − n) such that every row of A⊥ is orthogonal (under the
usual dot product) to every row of A. We define the orthogonal dual for arrangements
by identifying an essential (central) arrangement of d hyperplanes in n-dimensional
space with the n × d matrix of coefficients of the homogeneous linear forms for which
the hyperplanes are kernels. When n ≥ 5, we show that if the matroid (or the lattice
of intersection) of an n-dimensional essential arrangement A contains a modular
copoint whose complement spans, then the derivation module of the orthogonally
dual arrangement A⊥ has projective dimension at least �n(n + 2)/4� − 3.
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Matroid . Orthogonal duality

1. Introduction

An important conjecture in the theory of hyperplane arrangements is Terao’s con-
jecture [14]: whether the derivation module D(A) of a central arrangement A is
free depends only on the “combinatorics,” that is to say, the matroid of A. Since
being free is equivalent to having zero projective dimension, a natural extension of
Terao’s conjecture is that the projective dimension pdim(D(A)) of D(A) depends
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only on the matroid of A. No counterexamples to this extended conjecture are known,
although in [21] Ziegler gives two arrangements with the same matroid but non-
isomorphic derivation modules. The common matroid in Ziegler’s example has rank
3 and is the truncation of the orthogonal dual M⊥(K3,3) of the cycle matroid of the
complete bipartite graph K3,3. This matroid has two inequivalent representations,
one from projecting a representation of M⊥(K3,3) from a point in general posi-
tion, the other, a less special one which cannot be “erected”. However, the deriva-
tion modules of these two arrangements both have projective dimension 1. Ziegler’s
examples provide one motivation to study derivation modules of orthogonal duals
of arrangements. Another motivation comes from computer experiments suggesting
that derivation modules of duals of free arrangements tend to have high projective
dimension.

The notion of orthogonal duality is pervasive in combinatorics. H. Whitney first
defined duality for matroids in his 1932 paper [16] to extend the notion of a dual or
face graph of a planar graph to arbitrary graphs. He proved the theorem (equivalent
to Kuratowski’s theorem for planarity) that a graph is planar if and only if its matroid
dual is a graphic matroid. Another example (suggested by a referee) is the concept
of association introduced by Coble in [2]; for an application to generic arrangements
see [5]. Duality also occurs in linear programming, combinatorial optimization, and
coding theory. It is closely related to Alexandrov and other kinds of duality in algebraic
topology. See, for example, [3, 4, 10].

Let X be a subspace in the lattice LA of intersection of the arrangement A. The
closed subarrangement AX is the subset of all hyperplanes in A containing X. When
X is 1-dimensional, AX is a copoint. A closed subarrangement AX (or its associated
subspace X ) is modular if

rank(X ∨ Y ) + rank(X ∩ Y ) = rank(X ) + rank(Y )

for every subspace Y in LA. Chains of modular flats occur (by definition) in supersolv-
able arrangements. In addition, it is easy to show by induction and the addition-deletion
lemma (see [14] or [9], Chap. 4) that if an arrangement A has a modular copoint AX

which is free, then A itself is free.
A subarrangement of an essential arrangement spans if it is essential. The ceiling

�x� of a real number x is the the smallest integer greater than or equal to x . The floor
	x
 of x is the largest integer less than or equal to x .

Our main result is the following theorem.

Theorem 1.1. Let A be an essential arrangement over an arbitrary field with a mod-
ular copoint X such that its complement A\AX spans. Suppose that the dimension
n of A is at least 5. Then the projective dimension of the derivation module of the
orthogonal dual A⊥ is bounded below by �n(n + 2)/4� − 3.

The proof of Theorem 1.1 is combinatorial. We show that an arrangement A satis-
fying the main hypotheses in 1.1 contains a spanning subarrangement with the same
matroid as the braid arrangement An+1. This implies that the dual A⊥ contains a
closed circuit with at least �n(n + 2)/4� hyperplanes. The proof is completed by
combining a result of Terao on projective dimension of closed subarrangements with
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results of Rose and Terao, and Yuzvinsky on the projective dimension of generic
arrangements.

2. Projective dimension of D(A) and closed subarrangements

In this section, we discuss the two theorems from hyperplane arrangements we need.
Both theorems hold over arbitrary fields.

A generic arrangement is an arrangement of at least n + 1 hyperplanes in n-
dimensional space for which every subset of n hyperplanes is independent. In partic-
ular, matroids of generic arrangements are uniform matroids. The following theorem
is due to Rose and Terao [11] and Yuzvinsky [19].

Theorem 2.1. If A is a generic arrangement in kn, then pdim(D(A)) = n − 2.

We shall also use the following theorem of Terao [15] (see also [1]).

Theorem 2.2. If AX is a closed subarrangement of A, then

pdim(D(A)) ≥ pdim(D(AX )).

Terao’s proof is unpublished. Yuzvinsky gives a proof in [20]. For the reader’s
convenience, we give another proof, which is a more elementary version of the proof
in [20] (but requires the hypothesis that the field k has characteristic zero). Let S be
the symmetric algebra Sym(V ∗) of the dual space V ∗. The algebra S is isomorphic
to the polynomial algebra k[x1, x2, . . . , xn], where {xi } is a dual basis for V . Let
A = {Hi : 1 ≤ i ≤ d} and Q be the polynomial Q = ∏d

i=1 li , where for each i, li is
a homogeneous linear form such that the kernel V (li ) of li is the hyperplane Hi . The
derivation module D(A) is the S-module of all S-derivations θ such that for all i ,
θ (li ) is in the principal ideal 〈li 〉 ⊆ S. If char k = 0, this is equivalent to the single
condition θ (Q) ∈ 〈Q〉. The Euler derivation

∑
xi∂/∂xi generates a free summand

S(−1) of D(A) and

D(A) = S(−1) ⊕ D0(A),

where D0(A) is the kernel of the Jacobian matrix JQ, the n × 1 matrix with (i, 1)-entry
equal to ∂ Q/∂xi (see, for example, [19]). In particular, the projective dimension of
D(A) is one less than the projective dimension of the ideal 〈JQ〉 generated by the
entries of the matrix JQ .

Let X be a subspace in the intersection lattice of A. Order the hyperplanes of A
so that the closed subarrangement AX equals {H1, H2, . . . , Hs}. Choose coordinates
so that X is the subspace V (x1, x2, . . . , xk) defined by the equations x1 = 0, x2 =
0, . . . , xk = 0, and hence, a hyperplane Hi in AX may be written as the kernel V (li )
with li a homogeneous linear form in k[x1, . . . , xk].
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Let P be the prime ideal 〈x1, . . . , xk〉 in S. By our choice of coordinates, if the
hyperplane V (li ) does not contain the subspace X, then li equals γi + δi where γi is
a linear form in k[x1, . . . , xk], δi is a linear form in k[xk+1, . . . , xn], and δi �≡ 0.

Write Q = L K , where L = ∏s
i=1 li and K = ∏|A|

i=s+1 li . Computing the (i, 1)-entry
of JQ by the product rule, we have

∂Q

∂xi
= L

∂K

∂xi
+ K

∂L

∂xi
.

By our choice of coordinates, ∂L/∂xi = 0 when i > k. Hence, the Jacobian matrix
JQ simplifies to the transpose of the matrix[

L
∂K

∂x1

+ K
∂L

∂x1

, . . . , L
∂K

∂xk
+ K

∂L

∂xk
, L

∂K

∂xk+1

, . . . , L
∂K

∂xn

]
.

We localize at the prime ideal P. In the local ring SP , every element not in P
is a unit. Since each li with i > s has the non-zero form δi in k[xk+1, . . . , xn],
the product K contains at least one monomial in k[xk+1, . . . , xn]. Hence K is
a unit in SP . Similarly, ∂K/∂xi is nonzero for some i ∈ {s + 1, . . . , n} and
still contains a nonzero monomial in k[xk+1, . . . , xn]. In particular, as an el-
ement in SP , L equals K −1 Q and since Q ∈ 〈JQ〉 by Euler’s identity, L
is in the ideal 〈JQ〉P generated by the entries of JQ in SP . We conclude
that

〈JQ〉P =
〈
K

∂L

∂x1

, . . . , K
∂L

∂xk
, L

〉
P

.

Since K is a unit, it can be removed. Further, we can use Euler’s relation to write the
last generator L as a linear combination of the first k generators. We thus obtain

〈JQ〉P =
〈
∂L

∂x1

, . . . ,
∂L

∂xk

〉
P

= 〈JL〉P .

Since localization is an exact functor (see, for example, [6]), localizing a minimal free
resolution of 〈JQ〉 yields a free resolution (possibly non-minimal) of 〈JQ〉P , which
equals 〈JL〉P . The free resolution obtained for 〈JL〉P is also a free resolution for 〈JL〉
because L is in P. We conclude that

pdim(〈JL〉) ≤ pdim(〈JQ〉).

This completes the proof of Theorem 2.2.
We remark that Theorem 2.2 fails if one does not assume that the subarrangement

is closed. An easy example is the braid arrangement A4. It is free but contains three
generic subarrangements of four lines, none of them closed.
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Combining the results on generic arrangements and Theorem 2.2, we obtain a
simple but useful combinatorial corollary.

Corollary 2.3. Let A be an arrangement whose matroid contains a generic flat of
rank r. Then pdim(D(A)) ≥ r − 2. In particular, if the matroid of A contains a closed
circuit of size m, then pdim(D(A)) ≥ m − 3.

This corollary extends the folk-lore lemma that an arrangement cannot be free if it
contains a closed subarrangement consisting of four hyperplanes in general position
in 3-dimensional space.

Let G be a graph (without loops or multiple edges) with vertex set {1, 2, . . . , n} and
edge set E . The graphic arrangement AG is the collection {V (xi − x j ) | {i, j} ∈ E}.
For example, the braid arrangement An is the arrangement associated to the complete
graph Kn, the graph containing all possible edges. Graphic arrangements are never
essential; an arrangement from a connected graph can be made essential by suppressing
a variable. For example, An can be made into the essential arrangement Ân consisting
of the hyperplanes V (xi ) and V (xi − x j ), where 1 ≤ i < j ≤ n − 1.

The only generic flats in graphic arrangements are closed circuits. Closed circuits
correspond to induced cycles. Thus, Corollary 2.3 also extends the reverse implication
of a theorem (combining results in [13] and [14]) that a graphic arrangement is free
if and only if its graph is chordal, or equivalently, its graph has no induced cycles of
length greater than 3. In particular, we have:

Corollary 2.4. If a graph G contains an induced cycle of length m, then
pdim(D(AG) ≥ m − 3.

We close this section with some illustrations of Corollary 2.4 and several related
problems.

Example 2.5. Consider the graph G (with 8 vertices) given by the 1-skeleton of the
cube:
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A free resolution for D(AG) is:

0 −→ S3(−7) −→ S13(−6) −→
S(−4)

⊕
S19(−5)

−→

S(−1)

⊕
S(−2)

⊕
S9(−3)

⊕
S6(−4)

−→ D(AG) −→ 0

The diagram gives the degree (but not the explicit expressions) of the generators of the
free modules. For example, from the diagram, one sees that D(AG) can be generated
by 17 generators, one of degree 1 (the Euler derivation), one of degree 2, nine of
degree 3, and six of degree 4. These generators have relations which can be generated
by 20 relations. The indexing of a free resolution starts at zero, and so D(AG) has
projective dimension 3. Since G has an induced cycle of length 6, this is the lower
bound predicted by Corollary 2.4.

Example 2.6. Let G be the triangular prism:

A free resolution for D(AG) is:

0 −→ S(−5) −→ S5(−4) −→
S(−1)

⊕
S(−2)

⊕
S7(−3)

−→ D(AG) −→ 0

The maximum length of an induced cycle in G is 4, but the projective dimension
of D(AG) is 2. Hence, pdim(D(AG)) can be strictly greater than the bound given in
Corollary 2.4.

Example 2.6 raises several questions. Is there a characterization of graphs G for
which pdim(D(AG)) = m − 3, where m is the maximum size of an induced circuit?
Are there reasonable formulas involving graph parameters for pdim(D(AG))? In anal-
ogy to excluded minors in matroid theory (see, for example, [8], Section 8), define an
arrangement A to be k-minimal if pdim(D(A)) = k and for every proper closed sub-
arrangement AX ⊂ A, pdim(D(AX )) < k. The graphic arrangement of the triangular
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prism is 2-minimal and rank-m generic arrangements are (m − 2)-minimal. It seems
an interesting problem to classify k-minimal arrangements.

3. Orthogonal duals of arrangements

Let A be a hyperplane arrangement in n-dimensional space. We construct an n × |A|
matrix A as follows: each hyperplane H inA labels a column equal to (c1, c2, . . . , cn)t ,

where H = V (c1x1 + c2x2 + · · · + cn xn). Conversely, given a matrix A, we construct
an arrangement by simplifying, that is, removing all zero columns, constructing a
multiset of hyperplanes corresponding to the kernels of the linear forms defined by
the columns, giving a multiarrangement, and disregarding the multiplicities to obtain
an arrangement.

If A is essential, the hyperplanes in A intersect in the zero subspace, and the
matrix A has full rank n. The correspondence between essential arrangements A
and n × |A| matrices A, with no zero columns and no two columns a non-zero
multiple of each other, is bijective up to left multiplication by elements of GL(n),
and right multiplication by a product of a permutation matrix and a non-singular
diagonal matrix. The matrix A is a representation for the matroid M(A) of the
arrangement A.

Suppose that A is an n × d matrix having full rank n. An (orthogonal) dual of A is
an (d − n) × d matrix B having full rank d − n such that any row of A is orthogonal
(under the usual dot product) to any row of B. The matrix B exists and is determined
up to left multiplication by a non-singular matrix. In addition, if A⊥ is a dual of A, then
it is also a dual of any matrix obtained from A by left multiplication by a non-singular
matrix. Thus, duality is an operation defined between equivalence classes of matrices.
In particular, there is an easy way to construct a dual of A. Put A into the form [I |C],
where I is the n × n identity matrix. Then a dual of A is [−Ct |I ], where I is the
(d − n) × (d − n) identity matrix.

If A is an essential arrangement with matrix A, we define its (orthogonal) dual
A⊥ to be the arrangement obtained from a dual of the matrix A. Note that because we
discard zero columns and ignore multiplicities, A is not reconstructible from A⊥ in
general.

We will also need several elementary facts from the theory of matroid duality (see
[3, 4, 10, 17]). There are many ways to define the orthogonal dual of a matroid. For us,
the best definition is the circuit-cocircuit definition. Recall that a circuit is a minimal
dependent set and a cocircuit is the complement of a copoint. The (orthogonal) dual
M⊥ of M is the matroid on the same ground set whose circuits are exactly the cocircuits
of M. Duality interchanges contraction and deletion, that is, for a subset B of the set
of elements, (M⊥)/B equals (M\B)⊥. It is true (but not obvious) that the matroid of
the dual arrangement A⊥ is the simplification of the dual of the matroid of A. Despite
its age, the neatest and most accessible proof of this remains Whitney’s original proof
in [17].

A loop is an element e such that the set {e} is a circuit. An isthmus is an element
e such that {e} is a cocircuit, so that M is the direct sum (M\{e}) ⊕ {e}. For graphs,
an isthmus is an edge whose removal increases the number of connected components.
Duality interchanges loops and isthmuses.
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We shall call closure in the dual matroid M⊥ ⊥-closure.

Lemma 3.1. Let M be a matroid on the set E and B ⊆ E . Then e is in the ⊥-closure
of B if and only if e is in B or e is an isthmus in the deletion M\B. In particular, a
cocircuit B is ⊥-closed if its complementary copoint X has no isthmuses.

Proof: The lemma follows from dualizing the statement: a point e is in the ⊥-closure
if and only if e is a loop in the contraction M⊥/B. �

The cycle matroid M(G) of a graph is the matroid on the edge set whose circuits
are the cycles of the graph. A cutset in a graph G is an edge-subset whose removal
increases the number of connected components of G. The circuits of the dual matroid
G⊥ are precisely the minimal cutsets of G. For graphs, an isthmus is an edge which is
a cutset by itself. Thus, Lemma 3.1 gives an easy way to determine whether a minimal
cutset is ⊥-closed. We remark that the set of all edges incident to a vertex v is a
minimal cutset. Such “vertex cutsets” usually contain few edges compared to other
minimal cutsets.

The complete graph Kn is the graph on n vertices with all possible edges. The
maximum size of a minimal cutset in complete graphs is given in the next lemma.

Theorem 3.2. The largest cocircuit in the cycle matroid M(Kn+1) has size �n(n +
2)/4�. When n ≥ 5, the largest cocircuits are ⊥-closed.

Proof: Because Kn+1 contains all possible edges, minimal cutsets are in bijection with
partitions of the vertex set into two non-empty subsets and these cutsets disconnect
Kn+1 into two disjoint smaller complete graphs. By Lemma 3.1, every minimal cutset
in Kn+1 gives a ⊥-closed cocircuit with the exception of the cutsets which divide
Kn+1 into a Kn−1 and a single edge K2. The largest minimal cutsets are those which
divide Kn+1 into two connected components of almost equal size. We conclude that the
largest cocircuit in M(Kn+1) has size k2 if n + 1 = 2k and k(k + 1) if n + 1 = 2k + 1.

To finish, it is easy to check that �n(n + 2)/4� equals k2 or k(k + 1) depending on the
parity of n + 1. �

Theorem 3.3. Let M be a rank-n matroid on the set S with a modular copoint X.

Suppose that the cocircuit S\X spans. If n ≥ 5, then there exists a ⊥-closed cocircuit
in M of size at least �n(n + 2)/4�.

Proof: We shall use the following lemma.

Lemma 3.4. Under the hypotheses in the theorem, M contains a spanning submatroid
isomorphic to M(Kn+1).

Proof: This is a combination of Lemma 5.3 in [7] and Lemma 5.14 in [8]. For the
sake of completeness, we will give a proof in the language of arrangements and linear
forms. Choose coordinates so that the linear forms xi , 1 ≤ i ≤ n are in the cocircuit
S\X and the copoint X is the subarrangement of all linear forms whose kernel contains

Springer



J Algebr Comb (2006) 24:253–262 261

the point (1, 1, . . . , 1). By modularity,

rank((xi ∨ x j ) ∧ X ) = rank(X ) + rank(xi ∨ x j ) − n = 1

for every pair xi and x j of linear forms. Hence, there is a linear combination of xi

and x j whose kernel contains (1, 1, . . . , 1). This form is xi − x j , so the arrangement
contains the subarrangement {xi , xi − x j | 1 ≤ i < j ≤ n}, which is isomorphic to
the graphic arrangement of Kn+1. �

Let K be a spanning submatroid in M isomorphic to M(Kn+1). Take a copoint X ′

in the submatroid K and let X be the closure of X ′ in M. A point in K\X ′ is still not
in X. Hence,

|S\X | ≥ |K\X ′|.

Choosing X ′ in M |K so that K\X ′ has size �n(n + 2)/4�, we obtain a cocircuit in M
having size at least �n(n + 2)/4�. If n ≥ 5, the copoint X ′ in K contains no isthmuses.
Since X and X ′ have the same rank, a direct summand of X induces a direct summand
of X ′. As X ′ contains no isthmuses, X also contains no isthmuses and the cocircuit
S\X is ⊥-closed. �

Corollary 2.3 and Theorem 3.3 imply Theorem 1.1.
Since the matroid of the braid arrangement An is M(Kn), Theorem 2.2 and Theorem

3.2 imply that the projective dimension of the dual of the “essential” braid arrangement
Ân is at least �(n − 1)(n + 1)/4� − 3. Lower bounds for the other families of real
reflection arrangements can be obtained using the method in the proof of Theorem 3.2.

Theorem 3.5. When n ≥ 5,

pdim
(
B⊥

n

) ≥
⌊

2

3
n2 + 1

3
n − 1

24

⌋
− 3.

When n ≥ 6,

pdim
(
D⊥

n

) ≥
⌊

2

3
n2 − 1

3
n + 1

24

⌋
− 3.

Proof: Consider the copoint isomorphic to the direct sum Ak ⊕ Bn−k in Bn spanned
by the n − 1 linear forms

x1 − x2, x2 − x3, . . . , xk−1 − xk, xk+1, xk+2, . . . , xn.

The cocircuit complementary to X has size(
k

2

)
+ k + 2k(n − k). (1)
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We obtain a cocircuit of maximum size when k is the integer closest to 2n/3 + 1
6

and
this maximum size is obtained by substitution into formula (1) and rounding down.
Since A2 and B1 contain a single form, the cocircuits of maximum size are ⊥-closed
if n ≥ 5. The argument for Dn is similar. �

The argument for Bn can also be applied to the complex reflection arrangements
G(n, 1, l) to give a rough lower bound of (l2/(2l + 2))n2 for pdim(G(n, 1, l)⊥) when
n ≥ 5.
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