ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The Lascoux, Leclerc and Thibon algorithm and Soergel's tilting algorithm

Steen Ryom-Hansen
Univerdad de Talca Instituto de Matemática y Física Chile Chile

DOI: 10.1007/s10801-006-6026-5

Abstract

We generalize Soergel's tilting algorithm to singular weights and deduce from this the validity of the Lascoux-Leclerc-Thibon conjecture on the connection between the canonical basis of the basic submodule of the Fock module and the representation theory of the Hecke-algebras at root of unity.

Pages: 5–20

Keywords: keywords tilting modules; crystal basis; Fock module; kashdan-Lusztig polynomials

Full Text: PDF

References

1. H.H. Andersen, “Tensor products of quantized tilting modules,” Commun. Math. Phys. 149 (1992), 149- 159.
2. S. Ariki, “On the decomposition numbers of the Hecke algebra G(m, 1, n),” J. Math. Kyoto Univ. 36 (1996) 789-808.
3. H.H. Andersen, J.C. Jantzen and W. Soergel, “Representations of quantum groups at a p-th root of unity and of semisimple Groups in characteristic p: Independence of p,” Astérisque 220 (1994).
4. S. Donkin, “On Schur algebras and related algebras. IV. The blocks of the Schur algebras,” J. Algebra 168(2), (1994) 400-429.
5. K. Erdmann, “Symmetric groups and quasi-hereditary algebras. Finite dimensional algebras and related topics,” in V. Dlab and L.L. Scott, (eds.), Kluwer, 1994, pp. 123-161.
6. F. Goodman and H. Wenzl, “Crystal basis of quantum affine algebras and affine Kazhdan-Lusztig polynomials,” Internat. Math. Res. Notices 5 (1999), 251-275 MR1675980 (2000b:17017)
7. F. Goodman and H. Wenzl, “A path algorithm for affine Kazhdan-Lusztig polynomial,” Math. Z. 237(2) (2001) 235-249. MR1838309 (2002i:20006)
8. G. James, “The decomposition matrices of Gln(q) for n \leq 10,” Proc. London Math. Soc., 60 (1990) 225-265.
9. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Hecke algebras at roots of unity and crystal bases of quantum affine algebras,” Commun. Math. Phys. 181 (1996) 205-263.
10. B. Leclerc and J.-Y. Thibon, “Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials, Combinatorial Methods in Representation Theory,” Advanced Studies in Pure Mathematics 28 (2000) 155-220.
11. B. Leclerc, J.-Y. Thibon, “Canonical bases of q-deformed Fock spaces,” Int. Math. Res. Notices, 9 (1996) 447-456.
12. W. Soergel and Kazhdan-Lusztig-Polynome und eine Kombinatorik f\ddot ur Kipp-Moduln, Represent. Theory 1 (1997) 37-68.
13. W. Soergel, “Characterformeln f\ddot ur Kipp-Moduln \ddot uber Kac-Moody Algebren, Representation Theory,” 1 (1997) 115-132.
14. M. Varagnolo and E. Vasserot, On the decomposition numbers of the quantized Schur algebra, Duke Math.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition