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Abstract We generalize Soergel’s tilting algorithm to singular weights and deduce from

this the validity of the Lascoux-Leclerc-Thibon conjecture on the connection between the

canonical basis of the basic submodule of the Fock module and the representation theory of

the Hecke-algebras at root of unity.
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1. Introduction

In this paper we show that the Lascoux-Leclerc-Thibon conjecture [9] on the connection

between the canonical basis of the basic submodule of the Fock module and the representation

theory of Hecke-algebras at a root of unity follows from the truth of Soergel’s tilting algorithm.

This result was independently obtained by Goodman and Wenzl [6] and has also been proved

by Leclerc-Thibon [10].

Our proof (which has existed in various versions since 1997) differs in several ways from

the above proofs, first of all it relies notationally as wells as philosofically directly on the

principle of graded representation theory as exposed in the paper of Andersen, Jantzen and

Soergel [3]. Indeed, as our first result we explain how the AJS-formalism naturally leads to

an extension of Soergel’s algorithm so as to be able to deal with singular weights, i.e. weights

lying on several reflecting hyperplanes. This singular combinatorics is important from our

point of view, since the partitions appearing in the LLT-algorithm typically correspond to

very singular weights. However, it should be noted that since the basic setting of [3] is that
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of Frobenius kernels, we cannot formally use the results of that paper. Indeed, we only check

in type A that the singular combinatorics does not depend on the path of weights chosen and

do so by comparing it with the LLT algorithm for large values of l, the order of the root of

unity.

We then go on to show that our singular combinatorics yields the correct tilting characters

using the correctness of the original Soergel algorithm together with some known properties of

tilting modules and translation functors. Finally, we show that the LLT-algorithm is a special

case of our singular combinatorics; this involves a detailed analysis of the correspondence

between partitions and weights.

I wish to thank B. Leclerc and W. Soergel for useful discussions.

2. Preliminaries

In this section we shall setup the notation needed. Let g be a finite dimensional semisimple

Lie-algebra over the complex numbers and let Uq (g) be the associated quantum group at an

l-th root of unity, see e.g. [1] for the precise definition. The representation theory of Uq (g)

is labeled by the set of dominant weights P+ and the blocks correspond under this labeling

to orbits in P+ under the affine Weyl group Wl . Thus, for every weight λ ∈ P+ there is a

standard module �(λ), a costandard module ∇(λ), a simple module L(λ) and a tilting module

Q(λ). See [1, 3, 12] for more details.

We shall make extensive use of the following notation on alcove geometry introduced in

[3]. Let � be a regular orbit of Wl in P+, i.e. one consisting of regular weights (lying on no

walls), and let � be a singular orbit. Following [3], for λ ∈ � we denote by λ� the unique

element of � in the closure of the alcove of λ. Furthermore, we set

u(λ, �) = |{H ∈ H|λ� ∈ H, λ < H}|
o(λ, �) = |{H ∈ H|λ� ∈ H, λ > H}|

where H denotes the set of reflecting hyperplanes for Wl . Using this we can define �s by

�s := {λ ∈ � | u(λ, �) = 0}

Let us illustrate this on an A2 example:

Example 1.

s
λ Ω

Γ
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Let us briefly recall Soergel’s algorithm as well as the LLT-algorithm. Let A be the set of

alcoves, A+ the set of dominant alcoves. Then the Grothendieck group of � can be identified

with Z[A+]. Soergel’s algorithm produces for each A ∈ A+ an “indecomposable pattern”

PA ∈ Z[q][A+], by which we mean an element PA ∈ Z[q][A+] on the form

PA(q) = A +
∑
B<A

PAB(q)

where PAB(q) ∈ qZ[q]. This pattern contains information about the character of the tilting

module Q(A) with highest weight λ where λ ∈ A ∩ �. In formulas:

[Q(A), �(B)] = PAB(1)

where �(B) is shorthand for �(μ), where μ ∈ B ∩ �. The procedure for calculating PA

is a recursion on A. It involves for each wall s of the fundamental alcove an operator �s

on Z[q][A+] taking the indecomposable pattern to a sum of indecomposable patterns (i.e.

patterns with more than one coefficient having a constant term). This operator is defined

through the formula

�s A =
⎧⎨⎩

A + q(As) if As > A and As ∈ A+

A + q−1(A) if As < A and As ∈ A+

0 if As �∈ A+

and linearity; As is here the mirror alcove of A under the reflection given by s. The follow-

ing picture illustrates the first two cases of this action in an alcove geometry of a type A

situation, where the reflection is going upwards in the first case, downwards in the second

case.

Example 2.

θs θs –1

1

1

q

1 q
1

As

A

As

A

A

As

A

As

One then subtracts inductively known indecomposable patterns to arrive at the new inde-

composable pattern, whose top alcove is the only one with a coefficient involving a constant

term. We illustrate the algorithm on the following A3 examples, and refer to [12] for more

details.
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Example 3.

1

1

q

1 q

1

q q
2q

1
q q

q2

1
q q

q2 q2

3q3q q+

q +12

Following the terminology introduced in [12], we shall denote the above algorithm a “com-

binatorics” for tilting modules.

We now briefly recall the LLT-algorithm. Let Fq = ⊕
λ∈Par Q(q)|λ〉 be the q-Fock space

with basis parameterized by the set of all partitions Par. It can be made into an integrable

module for Uq (ŝll ) and thus has a crystal basis. The LLT-algorithm calculates the global basis

of the basic submodule M of Fq , which is the one generated by the empty partition. Let L
be the Z[q]-sublattice of Fq with basis {|λ〉 | λ ∈ Par}. The lower global basis element G(λ)

of M is characterized by the following conditions

G(λ) = G(λ), G(λ) = |λ〉 mod q L (1)

for λ ∈ Parl , i.e. an l-regular partition, where · is the involution of M given by

∅̄ = ∅, fiw = fi w̄ ∀i and q̄ = q−1,

Let dλμ(q) be defined by

G(λ) =
∑

μ

dλμ(q)|μ〉 (2)

Then dλμ(q) ∈ Z[q], dλ,μ(q) = 0 unless λ � μ and dλ,λ(q) = 1. Call an element w of M
selfdual if it satisfies w̄ = w. A selfdual element w can be written in the form

w =
∑

λ

aλ(q)G(λ)

for some aλ(q) ∈ Z[q, q−1] satisfying aλ(q) = aλ(q). The LLT-algorithm first constructs for

each regular partition λ a selfdual element wλ such that the coefficient of G(λ) in wλ is 1 and

such that μ < λ for all other occurring G(μ). From this, G(λ) is obtained by linear algebra.

LLT conjectured that for λ an l-regular partition

dλμ(1) = [S(μ), D(λ)]
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where S(μ) and D(λ) are the Specht and the simple modules for the Hecke algebra of type

A specialized at an l’th root of unity. This conjecture was first proved by Ariki [2] using

the geometric approach to the crystal/canonical basis. The goal of this paper, however, is to

demonstrate that it also follows from Soergel’s algorithm.

3. Singular tilting modules

We first need to generalize some results of Andersen on singular tilting modules.

Let � be a regular Wl -orbit in P+ containing λ and let � be a singular orbit containing

μ. Let T �
� be the Jantzen translation functor from the �-block to the �-block, see e.g. [1].

We then have the following proposition

Proposition 1. Assume λ� = μ and λ ∈ �s . Then

T �
� Q(μ) ∼= Q(λ)

Proof: One can copy the proof of Proposition 5.6 in Andersen’s paper [1]. In that paper �

is assumed semiregular; however the proof carries over to our situation. �

As a corollary, we obtain that the character of the singular tilting modules can be calculated

from the regular ones:

Corollary 1. Let μ, μ̄ ∈ �. Then

[Q(μ), �(μ̄] = 1

N�

∑
λ̄:λ̄�=μ̄

[Q(λ), �(λ̄)]

where λ ∈ �s with λ� = μ. (As in [AJS] Nλ denotes the number of hyperplanes in H such
that λ ∈ H).

Proof: We know that

T �
� T �

� Q(μ) ∼= Q(μ)⊕N� .

Hence we obtain the Corollary from the Theorem using the standard properties of translation

functors. �

4. A combinatorics of graded translation functors

We saw in the previous section that the singular tilting characters can be deduced from the

regular ones. Now there may be no regular weights in the weight lattice, so we still insist

on constructing a combinatorics of graded translation functors that works in the singular

case. This section is devoted to that task. We do it by assuming the existence of a formalism

of graded translation functors for our Uq (g)-representation theory having the same formal
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properties as the ones in [3] for the Frobenius kernels. We then show that this naturally leads

to a combinatorics for singular tilting modules.

Let thus �τ = �, �λ = � and �μ = � be the orbits under Wl of τ , λ and μ. Assume

furthermore τ regular and μ more singular than λ, i.e. Wλ ⊆ Wμ.

Example 4.

τ

λμ

Let K(τ ), K(λ) and K(μ) be the corresponding Z-graded Grothendieck groups, i.e. K(τ ) =
Z[q][�] etc. As mentioned above they so far have been constructed only in the case of

Frobenius kernels. According to the [3]-philosophy, they should come with a system of

operators (graded translation functors)

T ∗
μ,λ : K(μ) → K(λ), T ∗

λ,τ : K(λ) → K(τ ), T ∗
μ,τ : K(μ) → K(τ )

T λ,μ
∗ : K(λ) → K(μ), T τ,λ

∗ : K(τ ) → K(λ), T τ,μ
∗ : K(τ ) → K(μ)

as well as a system of T ! and T! operators and a duality D relating the operators as follows

D ◦ T ∗
μ,λ ◦ D = T !

μ,λ

etc. Furthermore the duality should anticommute with the Z-shift in the categories, i.e.

D ◦ 〈1〉 = 〈−1〉 ◦ D.

Now [3] p. 253 suggests that T ∗
μ,τ and T τ,μ

∗ should satisfy the following rules:

T τ,μ
∗ �(τ ) = �(τ

�
) 〈o(τ, �)〉

T ∗
μ,τ �(μ) =

∑
τ : τ

�
=μ

�(τ )〈o(τ, �)〉

and similarly for T ∗
λ,τ and T τ,λ

∗ . We take this as our definition.

But then the transitivity forces us to define T λ,μ
∗ and T ∗

μ,λ by

T λ,μ
∗ �(λ) = �(λ�) 〈o(λ, �)〉

T ∗
μ,λ �(μ) =

∑
λ: λ

�
=μ

�(λ)〈o(λ, �)〉
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i.e. the very same formulas as translation to and from the regular orbits. One should here

notice that the expression 〈o(λ, �)〉 makes sense for all weights and that

o(τ, �λ) + o
(
τ

�λ
, �μ

) = o(τ, �μ)

Now T λ,μ
∗ = T λ,μ

! ; hence T λ,μ
∗ should preserve selfduality (i.e should commute with D).

On the other hand we have that T !
μ,λ = T ∗

μ,λ 〈−2(Nμ − Nλ)〉, so the operator that preserves

selfduality should be

T ∗
μ,λ 〈Nλ − Nμ〉

Using the convention that �(λ) = 0 whenever λ /∈ P+ and that

o(λ, �) + u(λ, �) = Nμ − Nλ

we arrive at the following first step for our combinatorics for tilting modules. We first assume

that the character of Q(ν) for ν ∈ K(λ) comes from an “indecomposable pattern” i.e. an

element of Z[q]K(λ) on the form

ν +
∑
ν ′<ν

Pν ′,ν(q) ν ′

with Pν ′,ν(q) ∈ qZ[q], We then assume that there are operators akin to the �s of the Section

2. The above considerations lead us to choosing these as follows.

Definition 1. Singular combinatorics for tilting modules: Step 1:

Let λ and μ be as above, i.e. with μ more singular than λ and let K(μ), K(λ) be the

corresponding graded categories. Then the graded translation functors �∗ and �∗ that take

tilting modules to tilting modules, are:

�∗ : K(λ) → K(μ) : �(λ) �→ �(λ�) 〈o(λ, �)〉
�∗ : K(μ) → K(λ) : �(μ) �→

∑
λ:λ

�
=μ

�(λ)〈−u(λ, �)〉

Let us illustrate this definition on an example

Example 5.

1

q
–1

q–2 1

q

q2

θ* θ*
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We here used the convention that the shift 〈1〉 in the graded category K(λ) corresponds to

the multiplication by q−1.

The next step of our combinatorics is to explain how to obtain the indecomposable pattern

with highest weight μ.

This is, like in the regular case, an inductive procedure, starting with the weights ν of

the fundamental alcove, for which the pattern Pν(q) equals ν itself. We then work ourselves

upwards through the weight lattice with successive functors �∗ and �∗ always trying to

produce indecomposable patterns.

If P(μ) is an indecomposable pattern in K(μ) then it is clear from the definition that

�∗ P(μ) will remain indecomposable.

Now applying �∗ to an indecomposable pattern P(λ) inK(λ) will generally not produce an

indecomposable pattern—and �∗ P(λ) will generally not even have coefficients in Z[q]. We

can therefore not just mimic Soergel’s procedure of subtracting inductively known patterns

to arrive at something indecomposable.

On the other hand the coefficient of the leading (maximal) weight μ will be “1” since �∗
does not lower the q-power when going upwards. For each occurrence in the arising pattern

of a qiν with i negative or zero, we then subtract γ (q)Pμ(q) where γ (q) ∈ Z[q, q−1] satisfies

γ (q) = γ (q−1). Repeating this eventually produces an indecomposable pattern with leading

coefficient “1”.

Since there may be no weights inside the alcoves we need to generalize the previous

considerations slightly to know what happens when translating between arbitrary singular

blocks. Since translation functors should depend only on the alcove geometry, we may pretend

that there exist regular weights. Then one finds for any λ, λ′ ∈ P+ a μ such that

Wλ ⊇ Wμ, Wλ′ ⊇ Wμ, Wμ ⊇ Wλ ∩ Wλ′

Let us illustrate this situation on an example

Example 6.

λ

μ

λ

Now for the ordinary translation functors we have transitivity in that case: T λ′
λ = T λ′

μ ◦ T μ
λ .

We can therefore take the composite �∗ ◦ �∗ as the graded version of T λ′
λ .
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Example 7.

λ

1

q
-1

Finally, we kill all weights which are not in the dominant Weyl chamber; this is analogous

to Soergel’s algorithm. Let us formulate all of this in one statement

Definition 2. Singular combinatorics, step two. Given λ ∈ P+. Let ν1, ν2, . . . νN be the set

of weights in P+ strictly less than λ in the usual order and assume inductively given tilting

patterns Pνi (q) ∈ Z[q]A for each νi . Let ν be a νi in the closure of the alcove of λ. Perform

the relevant functor �∗ or �∗ or composite thereof on Pν(q) and subtract appropriate Pνi (q)’s

as described to arrive at an indecomposable pattern. This is Pλ(q).

5. Comparing the combinatorics

We now have a singular alcove combinatorics. It is clear that it gives Soergel’s combinatorics

if we only use semiregular orbits and translate through the walls. We must check that it always

leads to the same answer, independently of the chosen path of weights. Once this has been

established, the algorithm will be correct, since we can choose a path

ν1, ν2, ν3, . . . νN , νN+1, . . . νN+K

such that ν1, ν2, ν3, . . . νN are regular and semiregular while νN+1, . . . νN+K have increasing

stabilizers. And for such a path, our algorithm yields the correct answer, by the correctness

of Soergel’s algorithm together with Corollary 1 and the construction of �∗.

We check this independency in type A only. The idea is to identify the graded translation

functors with the action of the fi ’s on the Fock space; thus our combinatorics is really the

combinatorics that calculates the global crystal basis. Since the global crystal basis is unique,

the singular combinatorics will have no ambiguity either.

Let us now therefore briefly review the correspondence between Young diagrams and

weights in type An .

Let λi be the length of the i’th line of the Young diagram Y (λ). Then Y (λ) is associated

with the weight

λ = (λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn, λn) ∈ P+

due to the fact that the simple root αi in type An has coordinates

αi = ( 0, 0, . . . ,
↓i
1 ,

↓i+1

−1 , 0, 0, . . . )
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We conclude that λ + ρ lies on a wall corresponding to αi iff the last residues of the i’th and

the i + 1’th rows are equal. This generalizes to other roots: if the last residues of two rows

are equal, the weight will lie on a wall. If one ends up on a wall by removing one node from

the upper of two lines, then the corresponding weight lies above the wall and so on.

Example 8. (l = 3)

The 0-residues give rise to three walls containing this λ + ρ. The removable 1 node means

that λ + ρ is positioned above two walls and below one wall coming from the 0-nodes.

Let us now focus on the n0 rows of Y having as last node a 0-node. Let Y ′ be the Young

diagram obtained from Y by adding one node to one of the rows (such a Y ′ may not exist).

We need to recall some facts on the modular representation theory of GLm(k).

Let �(λ) be the Weyl module given by λ � n. It is a module for GLm(k) for any m ≥ n.

According to the branching rule (α = λ, β = 1 in (2.30) of [8]) we have the following

identity in the Grothendieck group:

�(λ) ⊗ E =
∑

Young(λ)⊆Young(μ)
|Young(μ)\Young(λ)| = 1

�(μ)

Here E = �(1), i.e. the natural module for GLm(k). Using Donkin’s version of the

Nakayama conjecture [4] we obtain:

(∗) prλ′ (�(λ) ⊗ E) =
∑

Young(λ)⊆Young(μ)
|Young(μ)\Young(λ)| = {1−node}

�(μ)

Here prλ′ denotes projection onto the block of �(λ′); this is thus a formula for T λ′
λ in the

Grothendieck group.

We are now going to calculate a graded version of this formula, in other words we are

going to apply the operators �∗ and �∗ of the singular combinatorics of the previous section.

Consider firstly the situation where the n0 ‘0’-nodes are all removable and assume fur-

thermore that n1 = 0; i.e. no row has a a ‘1’-node at the end.
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Example 9. (l = 3)

The n0 ‘0’-nodes give rise to (n0
2 ) hyperplanes through λ. The other residues also give rise

to hyperplanes through λ; on the other hand, the components of T λ′
λ �(λ) all stay fixed with

respect to these other hyperplanes since we are adding only ‘1’-nodes in (∗).

The components of T λ′
λ �(λ) lie on fewer hyperplanes than λ since n1 = 0 and thus we

are in position to apply �∗
λ,λ′ from our singular combinatorics.

We must for each component �(μ) of T λ′
λ �(λ) calculate the number u(μ, �λ) =

#{ hyperplanes H through λ with μ < H} With the above λ, one of the occurring μ’s

will be

One sees in this example (which is easily generalized to all μ) that

u(μ, �λ) = #{0-nodes of λ above γ }

where γ = μ\λ. Thus �(μ) occurs in the graded translation from λ to λ′ with a shift of order:

−u(μ, �λ) = −#{0-nodes of λ above γ }
= −#{ indent 1-nodes of λ above γ } + #{ removable 1-nodes of λ above γ }

We now consider the slightly more general situation where some of the ‘0’-nodes of λ are

allowed to be non-removable; on the other hand we will require that there be no removable

‘1’-nodes in λ. One then gets that

n1 = #{ non-removable 0-nodes of λ}

Example 10. (l = 3)
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The n0 ‘0’-nodes still give rise to (n0

2
) walls passing through λ, but in this situation �∗

λ,λ′

is not a graded version of T λ′
λ , since λ′ lies on walls not passing through λ.

The correct graded version of T λ′
λ will be �τ,λ′

∗ ◦ �∗
λ,τ , where τ ∈ X (T ) ⊗ R is more

regular than each of the weights λ and λ′. In our example τ can be visualized by the following

“diagram”.

where we have added “half a node”.

We then have

u(τ, �λ) = #{0-nodes of λ above μ\λ}

Furthermore we have that

o(τ, �μ) = #{1-nodes of λ above μ\λ}

So �(μ) appears in the graded translation functor from λ to λ′ with a shift of size

−u(τ, �λ) + o(τ, �μ) = −#{indent 1-nodes of λ above μ\λ}
= −#{indent 1-nodes of λ above μ\λ} + #{removable 1-nodes of λ above μ\λ}

Consider finally the general situation in which we allow removable ‘1’-nodes.

Our graded version of T λ′
λ will then behave like ⊕ �τ,λ′

∗ ◦ �∗
λ,τ where τ ∈ X (T ) ⊗ R is

chosen as before. Each �(μ) appearing in the graded translation corresponds to a τ and the

same calculation as before gives a shift of size

−#{ indent 1-nodes of λ above μ\λ}
+ # { removable 1-nodes of λ above μ\λ}

Hence we get in all cases exactly the number −Nr
1 (λ, μ) of LLT. We can of course repeat

this argument for the other residues and we conclude that the fi operators on the Fock space

are really those graded translation functors in our singular setup that are summands of the

tensor product with the natural module. Let us formulate this as a theorem:

Theorem 1. Let fi be one of the standard generators of Uq (ŝll ) and let fiλ = ∑
cμ(q)μ in

the action of fi on Fq . Then
∑

cμ(q)μ equals ��(λ) in the singular combinatorics of the
previous section, where � is the operator of the singular combinatorics corresponding to λ

and μ, with μ being obtained from λ by adding an i-node.
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Now recall the selfdual element wλ of Fq , which is the first step of the LLT-algorithm. It

is on the form

wλ = f (n1)
i1

f (n2)
i2

. . . f (nk )
ik

∅

for some ik and nk where f (n)
i = ([n]q !)−1 f n

i is the usual divided power notation.

We therefore need to check that also the action of the higher divided powers f (n)
i =

([n]q !)−1 f n
i can be described in the singular combinatorics. This is an argument close to the

above. Let us start with an example.

Example 11. (l = 3)

It corresponds to a Steinberg weight in the A2 situation. Translating to the weight given by

the diagram σ :

can be described in our combinatorics by the following picture.

T*

q2

1

q

This is performed in the LLT-algorithm as a two step operation, adding one node in each

step. In the alcove geometry we get the following picture

q2

q+q -1

)( q+q -1

)( q+q -1

q

and so �∗ corresponds to f (2)
1 = 1

[2]
f 2
1 .
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The example generalizes to all n:

Theorem 2. The action of f (n)
i on Fq corresponds to a � of the singular combinatorics.

Proof: We may assume that i ≡ 1 mod l. Assume first that the residues of the end nodes of

λ are all different from 1. Then the end nodes of residue 0 all give rise to addable 1-nodes.

Let us consider f (n)
1 λ. Let I = {il1

, il2
, . . . , ilK } be the lines of λ having 0 as end residue

and let λJ for J ⊂ {l1, . . . , lK } with |J | = n be the partition obtained from λ by adding one

node to the lines of il j for j ∈ J . The pairs (a, b) of line numbers where a ∈ I such that

a < j ∀ j ∈ J and b ∈ J correspond to the hyperplanes through λ that lie above λJ , i.e. those

contributing to −u(λJ , �) of Definition 1 where λ ∈ �. But in the notation of Lemma 6.2

of [9] there are exactly N (id) + (n
2
) of these (where n = ks in loc. cit.). Since this is also the

coefficient of λJ in f (n)
1 λ the proof is finished in that case.

If there are 1-nodes occurring at the end of some lines, the situation is slightly more

complicated since the relevant operator in the combinatorics is a composite of �∗ and �∗.

Let J be as before. Let us first assume that these 1-nodes are all removable and let us denote

by K the corresponding line numbers. Then the pairs (a, b) of line numbers where a ∈ K
with a < j ∀ j ∈ J and b ∈ J gives the number of hyperplanes through λ lying below λJ , i.e.

contributing to o(λJ , �). By Definition 1 we should subtract this number from −u(λJ , �)

and thus find once more the exact correspondence with the formula for f (n)
1 λ.

Actually, this argument also holds in the case where some of these 1-nodes are non-

removable, by our definition of � via “half”-nodes and we are done. �

We can now prove that the singular combinatorics is well defined:

Theorem 3. Let the root system be of type A. Then the singular combinatorics is well defined,
i.e. does not depend on the path of weights.

Proof: Let μ1, μ1, . . . , μk, . . . , μN with μ1 in the fundamental alcove C and finishing with

μN = λ. We view the weights as partitions and show that each of the operators �μi ,μi+1 of the

singular combinatorics applied to μi can be identified with the action of f (n1)
i1

f (n2)
i2

· · · f
(n p)

i p

on νi ∈ Fq for some choice of fi j and ni j . But then the uniqueness of the crystal basis of

M ⊂ Fq shows that the crystal basis is independent of the choice of path.

Let T ⊂ G = Slm be a maximal torus so that μk defines a T -module. We associate a

partition (μi
1, μ

i
2, . . . , μ

i
m) with each of the μi by the rule 〈μi , α1〉 = μi

1 − μi
2 etc. This

partition is unique up to adding the first columns a number of times.

As usual, we let ρ denote the half sum of the positive roots, the corresponding partition

being (m, m − 1, . . . , 1). Recall that l is the order of the root of unity. Then the position of

μi in the alcove geometry with respect to l is equal to the position of rμi + (r − 1)ρ with

respect to the alcove geometry defined by rl. Indeed letting ωi denote the i’th fundamental

weight we have that

〈rλ + (r − 1)ρ + ρ, ωi 〉 = r〈λ + ρ, ωi 〉

and hence the end residues of rλ + (r − 1)ρ equal the r -multiples of the residues of λ. Thus

increasing the size of r gives rise to more weights inside the alcoves and makes it possible

to “separate” hyperplanes through λ coming from different residues.
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We choose r large enough for all of the operators � on the weights μi to be on the form

�∗ or �∗, that is involving no composites of such. Furthermore, we obtain by choosing r big

enough that all the occurring weights μi are l-regular partitions.

Write μi = σ and μi+1 = τ and let us first assume that the operator that takes σ to τ is

of the type �∗. We check that it can realized through a sequence of f (k)
i ’s.

By assumption we have that τi − τ j − i + j ≡ 0 mod l ⇒ σi − σ j − i + j ≡ 0 mod l.
Let I0 ⊂ [1, . . . , m] consist of those indices i such that τi − i ≡ 0 mod l and let similarly J0

be those indices i such that σi − i ≡ 0 mod l. Then I0 determines the hyperplanes passing

through τ that come from the residue 0 mod l and similarly J0. Thus by assumption we have

I0 ⊂ J0.

Let j ∈ I0\J0 be minimal. We can now add nodes to the j’th line of σ until the last residue

becomes 0. Each node added on the way does not give rise to any new coinciding residues,

since otherwise there would be a hyperplane separating σ and τ . Similarly we deal with the

other elements of ∈ I0\J0. But adding such nodes corresponds to the operation of fi where i
is the residue of the node. The other elements of j ∈ I0\J0 are dealt with similarly.

At this stage, σ and τ are in the same facette and we can add or subtract nodes to σ ,

without producing coinciding residues, to arrive at τ . Adding these nodes corresponds to the

operation of certain fi ’s while subtracting of nodes corresponds to certain ei ’s. But using the

relations of Uq (ŝll ), these cancel out and we are done in this case.

Assume now that the operator that takes μi to μi+1 is of the type �∗ and write μi = τ and

μi+1 = σ . Thus, there is a root α such that 〈τ + ρ, α〉 ≡ 0 while 〈σ + ρ, α〉 �≡ 0. We may

assume that α is the only such root, by otherwise passing to a larger l. Write α = ωk − ωl

for k < l and assume wlog. that the residues of the k’th and l’th line of τ are 0. Let I0 be as

before, i.e. I0 defines the hyperplanes passing through τ coming from the residue 0. Then

the end residues of the lines in σ of indices I 1
0 := {i ∈ I0| i ≤ k } are constant and so are the

end residues of the lines in σ of indices I 2
0 := {i ∈ I0| i ≥ l }. Let the first constant be n1 and

the second be n2. Assume first that n1 = 1 and n2 = 0. Then using Lemma 6.2 of [9] one

checks that f
(|I 1

0 |)
1 takes τ to σ .

For larger values of n1 we instead operate with the composite f
(|I 1

0 |)
n1 · · · f

(|I 1
0 |)

2 f
(|I 1

0 |)
1 on τ

and for larger values of n2 we first operates with f (|I0|)
n2 · · · f (|I0|)

2 f (|I0|)
1 on τ and then with a

sequence of the first type.

This finishes the proof of the Theorem. �

Remark . The paper [7] by Goodman and Wenzl contains a path algorithm for affine Kazhdan-

Lusztig polynomials valid for all Lie types. This gives a different proof of the Theorem.

Using the argument from the beginning of Section 5 we may now conclude that the LLT-

algorithm calculates [T (λ), �(μ)] for λ a regular partition. But by a q-analogue of Karin

Erdmann’s result in [5], this number is equal to the decomposition number dλμ for Hecke

algebras at an l’th root of unity. In other words, as claimed in the introduction of our paper,

the LLT-conjecture follows from Soergel’s algorithm.

Remark . The LLT conjecture only treats canonical basis coefficients dλ,μ(q) for λ an l-
regular partition. On the other hand, the singular combinatorics defined in the present paper

should work for arbitrary λ as well and produce decomposition numbers for the q-Schur

algebra. In [11], canonical basis coefficients dλ,μ(q) were defined for arbitrary λ and it was

conjectured that their values at 1 coincide with these decomposition numbers. This conjecure

was proved in [14].
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