A Formula for N-Row Macdonald Polynomials
Ellison-Anne Williams
North Carolina State University U.S.A
DOI: 10.1007/s10801-005-6902-4
Abstract
We derive a formula for the n-row Macdonald polynomials with the coefficients presented both combinatorically and in terms of very-well-poised hypergeometric series.
Pages: 111–130
Keywords: keywords Macdonald polynomials; symmetric functions; hypergeometric series
Full Text: PDF
References
1. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge. 1990.
2. N. Jing and T. Jozefiak, “A Formula for two-row macdonald functions,” Duke Math. 67(2) (1992), 377-385.
3. M. Lassalle, “Explication des polynomes de Jack et de Macdonald en loungueur trois,” C.R. Acad. Sci. Paris. 333(I) (2001), 505-508.
4. I.G. Macdonald, Symmetric Functions and Hall Polynomials, second edition, Oxford University Press, Oxford, 1995.
2. N. Jing and T. Jozefiak, “A Formula for two-row macdonald functions,” Duke Math. 67(2) (1992), 377-385.
3. M. Lassalle, “Explication des polynomes de Jack et de Macdonald en loungueur trois,” C.R. Acad. Sci. Paris. 333(I) (2001), 505-508.
4. I.G. Macdonald, Symmetric Functions and Hall Polynomials, second edition, Oxford University Press, Oxford, 1995.