ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Proof of Two Conjectures of Brenti and Simion on Kazhdan-Lusztig Polynomials

Fabrizio Caselli
Università di Roma “La Sapienza” Dipartimento di Matematica “G. Castelnuovo” P. le A. Moro 5 00185 Roma, Italy

DOI: 10.1023/B:JACO.0000011936.75388.14

Abstract

We find an explicit formula for the Kazhdan-Lusztig polynomials P ui,a ,v i of the symmetric group \mathfrak S \mathfrak{S} ( n) where, for a, i, n \mathbb N \mathbb{N} such that 1 \mathfrak S \mathfrak{S} ( n) obtained by inserting n in position i in any permutation of \mathfrak S \mathfrak{S} ( n - 1) allowed to rise only in the first and in the last place. Our result implies, in particular, the validity of two conjectures of Brenti and Simion [4, Conjectures 4.2 and 4.3], and includes as a special case a result of Shapiro, Shapiro and Vainshtein [13, Theorem 1]. All the proofs are purely combinatorial and make no use of the geometry of the corresponding Schubert varieties.

Pages: 171–187

Keywords: Kazhdan-Lusztig polynomials; symmetric group; Bruhat order

Full Text: PDF

References

1. B.D. Boe, “Kazhdan-Lusztig polynomials for hermitian symmetric spaces,” Trans. Amer. Math. Soc. 309 (1988), 279-294.
2. F. Brenti, “A combinatorial formula for Kazhdan-Lusztig polynomials,” Invent. Math. 118 (1994), 371-394.
3. F. Brenti, “Combinatorial properties of the Kazhdan-Lusztig R-polynomials for Sn,” Adv. Math. 126 (1997), 21-51.
4. F. Brenti and R. Simion, “Explicit formulae for some Kazhdan-Lusztig polynomials,” J. Alg. Comb. 11 (2000), 187-196.
5. C. Ehresmann, “Sur la topologie de certains espaces homog`enes,” Ann. Math. 35 (1934), 396-443.
6. J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge, 1990.
7. D. Kazhdan and G. Lusztig, “Representations of Coxeter groups and Hecke algebras,” Invent. Math. 53 (1979), 165-184.
8. D. Kazhdan and G. Lusztig, “Schubert varieties and Poincaré duality, Geometry of the Laplace operator,” Proc. Symp. Pure Math. 34, Amer.Math. Soc., Providence, RI, 1980, 185-203.
9. V. Lakshmibai and B. Sandhya, “Criterion for smoothness of Schubert varieties in Sl(n)/B,” Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 45-52.
10. A. Lascoux and M.P. Sch\ddot utzenberger, “Polyn\hat omes de Kazhdan-Lusztig pour les grassmanniennes,” Young tableaux and Schur functions in algebra and geometry, Astérisque 87/88 (1981), 249-266.
11. M. Marietti, “Kazhdan-Lusztig polynomials for Boolean elements in linear Coxeter systems,” preprint.
12. P. Polo, “Construction of arbitrary Kazhdan-Lusztig polynomials in symmetric groups,” Representation Theory 3 (1999), 90-104.
13. B. Shapiro, M. Shapiro and A. Vainshtein, “Kazhdan-Lusztig polynomials for certain varieties of incomplete flags,” Discr. Math. 180 (1998), 345-355.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition