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Abstract. We find an explicit formula for the Kazhdan-Lusztig polynomials Pui,a ,vi of the symmetric group
S(n) where, for a, i, n ∈ N such that 1 ≤ a ≤ i ≤ n, we denote by ui,a = sasa+1 · · · si−1 and by vi the element
of S(n) obtained by inserting n in position i in any permutation of S(n −1) allowed to rise only in the first and in
the last place. Our result implies, in particular, the validity of two conjectures of Brenti and Simion [4, Conjectures
4.2 and 4.3], and includes as a special case a result of Shapiro, Shapiro and Vainshtein [13, Theorem 1]. All the
proofs are purely combinatorial and make no use of the geometry of the corresponding Schubert varieties.
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1. Introduction

In [7] Kazhdan and Lusztig defined, for every Coxeter system W , a family of polynomials,
parametrized by pairs of elements of W , which have become known as the Kazhdan-Lusztig
polynomials of W . These polynomials are intimately related to the Bruhat order of W and
have proven to be of fundamental importance in representation theory and in the geometry of
Schubert varieties. We will focus our attention to the case of the symmetric group. Despite
the rather elementary recursion relations they satisfy, these polynomials are in general
quite difficult to compute. In fact the only families of Kazhdan-Lusztig polynomials that
are known explicitly correspond to situations where the geometry of the corresponding
Schubert varieties is easier (see, for example, [1, 10, 12] and [13, Theorems 1 and 2]),
where the interval [u, v] has some special property (see, for example, [2, Corollaries 6.8
and 6.9]) or when the shape of the indexing permutations lead in some natural way to the
use of induction (see, for example, [4, Corollary 3.2 and Theorem 3.3] or [11]). This work
gives results in the direction of explicit formulae for the Kazhdan-Lusztig polynomials of
the symmetric group when the indexing permutations are of particular forms.

The main results are the following. First we reduce the calculation of Pu,v(q) when
u, v ∈ S(n) satisfy u−1(n)−v−1(n) ≤ 3 to an (easier) problem in S(n −1). Then we focus
our attention on permutations in S(n) that are obtained from an element of S(n−1) allowed
to rise only in the first and in the last position by inserting n (or 1) anywhere in its complete
notation. We write down certain recurrence relations satisfied by some related Kazhdan-
Lusztig polynomials and we obtain explicit formulae from these relations. Finally, as an
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application of this result, we find explicit formulae for Pe,σ (n−2)σ (n−1)σ (n) n−3···4 τ (1)τ (2)τ (3)

where (σ, τ ) ∈ S(3) × S(3) \ (e, e) act on the set {n − 2, n − 1, n, 1, 2, 3} in the most
natural way, establishing, in particular, two conjectures due to F. Brenti and R. Simion (see
[4, Conjectures 4.2 and 4.3]). The proofs rely on the special shape of the permutations
under consideration that will allow us to deduce some easy recursions satisfied by these
polynomials with no use of geometry.

2. Notation and preliminaries

In this section we collect some definitions and results that are used in the proofs of this
work.

We let N := {0, 1, 2, 3, . . .} be the set of non-negative integers and for a ∈ N we let
[a] := {1, 2, . . . , a} (where [0] = ∅). For b ∈ R we let �b� be the largest integer ≤b. Given
n, m ∈ N, n ≤ m, we let [n, m] := {n, n + 1, . . . , m}. We write S = {a1, . . . , ar }< to mean
that S = {a1, . . . , ar } and a1 < · · · < ar . For a sequence i1, i2, . . . , in and j ∈ [n], we denote
by i1, . . . , î j , . . . , in the subsequence i1, . . . , i j−1, i j+1, . . . , in obtained by suppressing the
entry i j .

For i ∈ Z we denote by

[i]q :=
i−1∑
j=0

q j

so that [i]q = 0 if i ≤ 0. Given a polynomial P(q) and i ∈ N we denote by [qi ](P(q)) the
coefficient of qi in P(q).

Given a set T we let S(T ) be the set of all bijections of T . To simplify the notation we
denote by S(n) instead of S([n]) the symmetric group on n elements and we denote by e the
identity of S(n). If σ ∈ S([n, n + k]) for some n, k ∈ N, then we write σ = σ1σ2 . . . σk+1

to mean that σ (n + i) = σi+1 for i = 0, . . . , k, and call this the complete notation of σ ,
while we denote by si the transposition (i, i + 1). Given σ, τ ∈ S(T ), we let στ := σ ◦ τ ,
i.e. we compose permutations as functions, from right to left.

Given σ ∈ S(n), the right descent set of σ is

DR(σ ) := {i ∈ [n − 1] : σi > σi+1},

the left descent set is

DL (σ ) := {i ∈ [n − 1] : (σ−1)i > (σ−1)i+1}

and the length of σ is defined by the number of inversions:

�(σ ) := inv(σ ) := #{(a, b) ∈ [n] × [n] : a < b, σa > σb}.

For example, if σ = 6 3 5 2 4 1 then DR(σ ) = {1, 3, 5}, DL (σ ) = {1, 2, 4, 5} and �(σ ) =
12. If u, v ∈ S(n) we also denote �(u, v) := �(v) − �(u).
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Throughout this work we view S(n) as a poset ordered by the strong Bruhat order. We
are not going to define this order in the usual way (see [6, Section 5.9] for its definition), but
we shall use the following characterization of it that is due to Ehresmann [5]. For σ ∈ S(n)
and j ∈ [n], let

{σ j,1, . . . , σ j, j }< := {σ1, . . . , σ j }.

Theorem 2.1 Let σ, τ ∈ S(n). Then σ ≤ τ if and only if σ j,i ≤ τ j,i for all 1 ≤ i ≤ j ≤
n − 1.

For u, v ∈ S(n) we also write u � v to mean that u ≤ v and �(u, v) = 1.
We take the following fundamental result (see [6, Section 7.11] for a proof) as the

definition of the Kazhdan-Lusztig polynomials:

Theorem 2.2 (Kazhdan-Lusztig) There exists a unique family of polynomials {Pu,v(q), u,

v ∈ S(n)} ⊂ Z[q] such that:
(1) Pu,v(q) = 0 if u �≤ v;
(2) Pu,v(q) = 1 if u = v;
(3) If u < v then

deg(Pu,v) ≤ �(u, v) − 1

2
;

(4) If u < v and i ∈ DR(v) then

Pu,v(q) = q1−c Pusi ,vsi (q) + qc Pu,vsi (q) −
∑

{z:i∈DR (z)}
q

�(z,v)
2 µ(z, vsi )Pu,z(q)

where, for u, v ∈ S(n),

µ(u, w) :=
{ [

q
1
2 (�(u,w)−1)

]
(Pu,w(q)), if u < w and �(u, w) is odd,

0, otherwise,

c = 1 if i ∈ DR(u) and c = 0 otherwise.

An important consequence of Theorem 2.2 is the following:

Proposition 2.3 Let u, v ∈ S(n) be such that u < v and i ∈ DR(v). Then

Pu,v(q) = Pusi ,v(q).

It should be remarked that Theorem 2.2 and Proposition 2.3 can be reformulated in a
similar way using left descents instead of right descents. An immediate consequence of
Proposition 2.3 is the following:



174 CASELLI

Corollary 2.4 Let z, w ∈ S(n), z ≤ w, be such that µ(z, w) �= 0 and �(z, w) > 1. Then
DR(z) ⊇ DR(w) and DL (z) ⊇ DL (w).

Corollary 2.4 motivates the following notation: for u, v ∈ S(n) and i ∈ [n − 1] we let

Z1(u, v; i) := {z ∈ S(n) : u ≤ z ≤ v, z /� v, DR(z) ⊇ DR(v) ∪ {i} and DL (z) ⊇ DL (v)},
Z2(u, v; i) := {z ∈ S(n) : u ≤ z � v, i ∈ DR(z)}

and Z (u, v; i) = Z1(u, v; i) ∪ Z2(u, v; i) so that Theorem 2.2 can be reformulated in the
following way:

Theorem 2.5 Let u, v ∈ S(n) be such that u ≤ v and i ∈ DR(v). Then

Pu,v(q) = q1−c Pusi ,vsi (q) + qc Pu,vsi (q) −
∑

z∈Z (u,vsi ;i)

q
�(z,v)

2 µ(z, vsi )Pu,z(q)

where c = 1 if i ∈ DR(u) and c = 0 otherwise.

Now it is clear that if we want to compute a Kazhdan-Lusztig polynomial using a recursion
based on Theorem 2.5 we need to know whenever µ(z, vsi ) �= 0. This problem is very
difficult in general but there are some classes of permutations where it has been solved.
Suppose u, v ∈ S(n) are such that u ≤ v ≤ (1, n). By one of the characterizations of
the Bruhat order (see, for example, [6, Section 5.10]) this implies that u and v admit a
reduced expression that is a subword of s1 . . . sn−1 . . . s1. Fix such expressions and denote
them by ũ and ṽ respectively. Moreover denote by ũk and ṽk the number of occurrences of
sk in ũ and ṽ respectively. For example if v = 4 1 3 2 we may choose ṽ = s1s2s3s2 so that
ṽ1 = 1, ṽ2 = 2 and ṽ3 = 1. The following result is due to Marietti and its proof can be
found in [11, Corollary 6.1]):

Theorem 2.6 Let u, v ∈ S(n) be such that u ≤ v ≤ (1, n), ṽ and ũ be two reduced
expressions for them that are subwords of s1 . . . sn−1 . . . s1. Then µ(u, v) = 0 or 1 and it is
1 if and only if there exist i, j ∈ N, 1 ≤ i ≤ j ≤ n − 1 such that

ṽk = ũk, if k < i,

ṽk = 2 and ũk = 1, if k = i,

ṽk = 2 and ũk = 0, if i < k ≤ j,

ṽk = ũk, if k > j.

One more useful property of the function µ (see [7, Corollary 3.2]) is the following:

Proposition 2.7 Let u, v ∈ S(n) . Then

µ(u, v) = µ(w0v, w0u),

where w0 = n . . . 2 1 is the longest element of S(n).
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Two other elementary properties of Kazhdan-Lusztig polynomials are the following (see
[2, Corollaries 4.3 and 4.4] for proofs):

Proposition 2.8 Let u, v ∈ S(n). Then

Pu,v(q) = Pu−1,v−1 (q)

= Pw0uw0,w0vw0 (q).

Let w ∈ S(n). We denote by w̄ (respectively w) the permutation of S(n − 1) obtained
from w by suppressing the value n (respectively by suppressing the value 1 and rescaling)
from its complete notation. For example, if w = 35214 then w̄ = 3214 and w = 2413.

Proposition 2.9 Let u, v ∈ S(n) be such that n occurs in the same position in both u and
v. Then

Pu,v(q) = Pū,v̄(q).

On the other hand, if 1 occurs in the same position in both u and v, then

Pu,v(q) = Pu,v(q).

Proof: This a special case of [3, Theorem 4.4]. However, the proof of this particular case
is so simple that can be included in this work for completeness. We prove only the first
statement, the proof of the second being similar. We proceed by induction on �(v), the
case �(v) = 0 being trivial. Observe that if u ≤ z ≤ v then z−1(n) = u−1(n) and that if
x, y ∈ S(n), x ≤ y, satisfy x−1(n) = y−1(n), then �(x, y) = �(x̄, ȳ). In particular we can
suppose that if �(y) < �(v) then µ(x, y) = µ(x̄, ȳ). If DL (v) ⊆ {n − 1} then u ≤ v implies
u = v and the result follows. So suppose i ∈ DL (v), i �= n − 1.
We compute

Pu,v(q) = q1−c Psi u,si v + qc Pu,si v −
∑

z:i∈DL (z)

µ(z, siv)Pu,z

= q1−c Psi u,si v + qc Pū,si v −
∑

z:i∈DL (z)

µ(z̄, siv)Pū,z̄,

by our induction hypothesis and hence

Pu,v(q) = q1−c Psi ū,si v̄ + qc Pū,si v̄ −
∑

z∈S(n−1):i∈DL (z)

µ(z, si v̄)Pū,z

= Pū,v̄(q)

by Theorem 2.2.

We conclude this section with a simple characterization of the permutations that, if used as
the second index, give rise to Kazhdan-Lusztig polynomials equal to 1 (see [9] for a proof).
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Let τ ∈ S(m) and σ ∈ S(n) with n ≥ m. We say that σ avoids τ if there is no subsequence
1 ≤ i1 < · · · < im ≤ n such that

σ (iτ (1)) < · · · < σ
(
iτ (m)

)
.

Theorem 2.10 (Lakshmibai-Sandhya) Let v ∈ S(n). Then

Pu,v(q) = 1 ∀ u ≤ v ⇐⇒ v avoids both 3412 and 4231.

3. A reduction theorem

Definition Let u, v ∈ S(n). Then we set

d(u, v) := u−1(n) − v−1(n).

Note that by Theorem 2.1, if u ≤ v we have d(u, v) ≥ 0.
We are going to reduce the calculation of Pu,v(q) to a problem for Kazhdan-Lusztig

polynomials for S(n − 1) when d(u, v) ≤ 3. We have already seen that if d(u, v) = 0 then
Pu,v(q) = Pū,v̄(q), so we may restrict our attention to the case d(u, v) > 0.

The next results, for d(u, v) = 1 or 2, are a reformulation and a generalization of a
theorem of F. Brenti and R. Simion (see [4, Theorem 3.1]).

Theorem 3.1 Let u, v ∈ S(n) be such that u ≤ v and i = v−1(n). Then
1. If d(u, v) = 1,

Pu,v(q) = Pū,v̄(q).

2. If d(u, v) = 2,

Pu,v(q) =
{

q1−c Pūsi ,v̄(q) + qc Pū,v̄(q), if i + 1 /∈ DR(v),

Pū,v̄(q), if i + 1 ∈ DR(v),

where c = 1 if i ∈ DR(u) and c = 0 otherwise.

Proof: Part 1 follows easily from Proposition 2.3 and Proposition 2.9.
The case i+1 ∈ DR(v) of part 2 is again a consequence of Proposition 2.3 and Proposition

2.9 so we may suppose i + 1 /∈ DR(v). By Theorem 2.5 and the first part of Theorem 3.1
we may write

Pu,v(q) = q1−c Pusi ,vsi (q) + qc Pu,vsi (q) −
∑

z∈Z (u,vsi ;i)

q
�(z,v)

2 µ(z, vsi )Pu,z(q)

= q1−c Pūsi ,v̄(q) + qc Pū,v̄(q) −
∑

z∈Z (u,vsi ;i)

q
�(z,v)

2 µ(z, vsi )Pu,z(q)
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and hence it is enough to show that the sum appearing in this formula is actually zero in
this case. Suppose z ∈ Z1(u, vsi ; i). Then i, i + 1 ∈ DR(z) and hence z−1(n) > i + 2 (since
z ≤ vsi ). But this implies that u �≤ z and hence Z1(u, vsi ; i) = ∅. It’s not difficult to verify
that also Z2(u, vsi ; i) = ∅ and the thesis follows.

Suppose now that d(u, v) = 3 and again set i = v−1(n). To fix the ideas we write

u := . . . ui ui+1ui+2n . . .

and

v := . . . nvi+1vi+2vi+3 . . .

If vi+2 > vi+3 then, by Proposition 2.3, we may swap ui+2 and n in u and hence we go
back to the case d(u, v) = 2. So, with no lack of generality, we may suppose vi+2 < vi+3,
i.e. i + 2 /∈ DR(v). We would like to use Theorem 2.5 taking i as a right descent for v. The
next result will allow us to simplify the sum in that formula in this case.

Lemma 3.2 Let u, v ∈ S(n) be such that u ≤ v, d(u, v) = 3, i = v−1(n) and i + 2 /∈
DR(v). Then the application z �→ z̄ establishes a bijection between the following sets of
permutations:

z ∈ S(n) such that z ≥ u

i ∈ DR(z), µ(z, vsi ) �= 0

and z � vsi

 ←→


z ∈ S(n − 1) such that z ≥ ū

i, i + 1 ∈ DR(z)

and µ(z, v̄) �= 0

.

Moreover, if z belongs to the set in the left-hand side, we have µ(z, vsi ) = µ(z̄, v̄),
�(z, v) = �(z̄, v̄) + 3 and Pu,z(q) = Pū,z̄(q).

Proof: Let z be in the set in the left-hand side. The condition z ≥ u implies z−1(n) ≤ i +3
while the condition z ≤ vsi implies z−1(n) ≥ i + 1. But since i, i + 1 ∈ DR(z) these
conditions force z−1(n) = i + 3 which implies that, if the map is well defined, it is actually
injective. Hence, locally, we have:

z = . . . e d c n . . .

with e > d > c and

v = . . . n x a b . . .

with a < b. Since d(z, vsi ) = 2 we can use Theorem 3.1 to obtain

Pz,vsi (q) = P...e c d n...,...x a n b... (q) + qP...e d c n...,...x a n b... (q)

= P...e c d n...,...x a n b... (q) + qP...e d n c...,...x a n b... (q).
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By Corollary 2.4 the first polynomial gives no contribution for µ(z, vsi ) and hence we
may conclude that

µ(z, vsi ) = µ(zsi+2, vsi si+1)

= µ(zsi+2, vsi si+1)

= µ(z̄, v̄),

where we have used Propositions 2.3 and 2.9. It’s a routine calculation that z and z̄ verify
the other conditions of the statement and we are done.

We are now ready to state the main result of this section:

Theorem 3.3 Let u, v ∈ S(n) be such that u ≤ v, d(u, v) = 3, i = v−1(n) and i + 2 /∈
DR(v). Then

Pu,v(q) = q2−c0,1−c0,2 Pūsi si+1,v̄(q) + q1−c0,1+c0,2 Pūsi ,v̄(q) + q1+c0,1−c1,2 Pūsi+1,v̄(q)

+ qc0,1+c1,2 Pū,v̄(q) −
∑

{z∈S(n−1):i,i+1∈DR (z)}
q

�(z,v̄)+3
2 µ(z, v̄)Pū,z(q)

− ε0qPū,v̄(q) − ε1qPū,v̄si+1
(q)

where

ε j :=
{

0, if vi+1 < vi+ j+2,

1, otherwise

and

c j,k :=
{

0, if ui+ j < ui+k,

1, otherwise.

Proof: The proof follows directly from Lemma 3.2 and Theorem 3.1. We only have to
check that the contribution of Z2(u, vsi ; i) is actually given by the last two polynomials and
this verification is left to the reader (the only two candidates for Z2(u, vsi ; i) are vsi si+1

and vsi (i + 1, i + 3) . . .).

It should be mentioned that both Theorems 3.1 and 3.3 can also be stated in a “dual”
version when u, v ∈ S(n) satisfy d̃(u, v) := v−1(1) − u−1(1) ≤ 3.

The next example will show us that, unfortunately, there can be many terms different
from 0 in the sum appearing in Theorem 3.3.

Example 3.4 Let n ≥ 5 and v := 3 . . . (n − 2) n (n − 1) 1 2 (and hence v̄ = 3 . . . (n −
2) (n − 1) 1 2) and u = e. Then it is easy to check that for every i ∈ [3, n − 2], (1, i)v̄ gives
rise to a non-zero summand in Theorem 3.3.
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4. Main results

The main goal of this section is to find an explicit formula for all polynomials Pu,v(q),
u, v ∈ S(n), when DR(v̄) ⊇ [2, n − 2] and u has some particular shape depending on that
of v.

With this purpose we fix x, y, n ∈ N such that x, y ∈ [2, n −1] and x �= y. We denote by
σ0 the unique element v of S(n−1) such that v(1) = x , v(n−1) = y and [2, n−2] ⊆ DR(v).

For any i ∈ [n] we denote by vi the unique permutation of S(n) satisfying the following
two conditions:

vi = σ0

v−1
i (n) = i

We also denote by ui,a ∈ S(n), ∀ a, i ∈ N, 1 ≤ a ≤ i ≤ n,

ui,a := sasa+1 . . . si−1

so that, in particular, ui,i = e, ∀ i ∈ [n].
For example, for n = 6, x = 4 and y = 2 we have v4 = 4 5 3 6 1 2, v5 = 4 5 3 1 6 2 and

u4,3 = 1 2 4 3 5 6.
We denote by Ri,a(q) := Pui,a ,vi (q). Note that Ri,1(q) can be easily expressed as a

linear combination of polynomials Ri,a with a > 1 and suitable values of x and y by
Proposition 2.3 and its “dual” version, so we only have to deal with the case a > 1.

The following is the main result of this paper:

Theorem 4.1 Let 2 ≤ a ≤ i ≤ n − 3. Then the polynomials Ri,a(q) satisfy the following
relations: if x > y

Ri,a(q) = qRi+1,a(q) + Ri+1,i+1(q) − qRi+2,i+2(q) − δi,n−y−1q − δi,n−x qx−y+1,

and if x < y

Ri,a(q) = qRi+1,a(q) + Ri+1,i+1(q) − qRi+2,i+2(q) − δi,n−yq,

where δi, j is the usual Kronecker symbol.

Proof: Case 1: x > y.
Let i ∈ [2, n − 3]. By Theorem 2.5 and Proposition 2.3 we have:

Ri,a(q) = qPui+1,a ,vi+1
(q) + Pui+1,i+1,vi+1 (q) −

∑
z∈Z (ui,a ,vi+1;i)

q
�(z,vi )

2 µ(z, vi+1)Pui,a ,z(q)

= qRi+1,a(q) + Ri+1,i+1(q) −
∑

z∈Z (ui,a ,vi+1;i)

q
�(z,vi )

2 µ(z, vi+1)Pui,a ,z(q).
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If z ∈ Z1(ui,a, vi+1; i) we have [2, n−2] ⊆ DR(z) that forces z−1(n) = n (since z ≤ vi+1).
Moreover the condition [1, n −2]\{y −1, x} ⊆ DL (z) implies that z(1) ∈ {y −1, x, n −1}.
But if z(1) = n − 1 we have z �≤ vi+1 (unless x = n − 1 but in this case it’s okay to exclude
n − 1 since we still have x) and hence we have two possibilities for z, namely:

ζ1 = x n − 1 . . . x̂ . . . 1 n

ζ2 = y − 1 n − 1 . . . ŷ − 1 . . . 1 n.

So we have to check whether µ(ζ j , vi+1) = 0 or not for j = 1, 2.
Suppose j = 1. If i > n − y − 1 (i.e. n appears after y − 1 in the complete notation of

vi+1), it’s easy to check that if we call ζ̃ 1 and ṽi+1 the permutations obtained by suppressing
the values 1, 2 . . . n − i − 2 (and rescaling) from ζ1 and vi+1 respectively we have:

µ(ζ1, vi+1) = µ(ζ̃ 1, ṽi+1)

= µ(x n − 1 . . . x̂ . . . n − i − 1 n, x n − 1 . . . x̂ . . . ŷ . . . n − i − 1 n y)

= 0

by Corollary 2.4.
Similarly, if i < n − y − 1, we have

µ(ζ1, vi+1) = µ(x n − 1 . . . x̂ . . . y n , x n − 1 . . . y + 1 y)

= 0.

Finally, if i = n − y −1 we have ζ1 � vi+1 and hence it doesn’t belong to Z1(ui,a, vi+1; i)
by definition.

Suppose now j = 2. If i ≥ n − y − 1 then the same proof of the case j = 1 implies
µ(ζ2, vi+1) = 0 and hence we may suppose that i < n − y − 1. But in this case we have
ζ−1

2 (h) = v−1
i+1(h) for h = 1, . . . , y −2, so we can suppose y = 2 with no lack of generality

(substituting x with x − y + 2 and n by n − y + 2). So we have

vi+1 = x n − 1 . . . n . . . 3 1 2

where n appears in position i + 1 and

ζ2 = 1 n − 1 . . . 2 n.

By Proposition 2.7 we can compute µ(w0vi+1, w0ζ2) instead of µ(ζ2, vi+1).
If n − x − i + 1 ≥ 0 we have

w0vi+1 = s1 . . . si−1sn−1sn−x . . . s1

and

w0ζ2 = s1s2 . . . sn−1sn−2 . . . s1.
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Hence, by Theorem 2.6, we have that µ(w0vi+1, w0ζ2) �= 0 if and only if i = n − x and
in this case µ(w0vi+1, w0ζ2) = 1.

If n − x − i + 1 < 0 we have

w0vi+1 = s1 . . . si sn−1sn−x−1 . . . s1

so, by Theorem 2.6, we have µ(w0vi+1, w0ζ2) = 0.
Now it is an easy exercise to verify that �(ζ2, vn−x ) = 2(x − y + 1) and that Pun−x,a ,ζ2 (q)

= 1.
Finally we leave to the reader to verify that

Z2(ui,a, vi+1; i) =
{ {vi+2}, if i �= n − y − 1,

{vi+2, x n − 1 . . . x̂ . . . 1 n}, if i = n − y − 1,

and the proof is complete.
Case 2: x < y. With an argument similar to that of Case 1 (and actually easier) we can

prove that Z1(ui,a, vi+1; i) = ∅.
As before we have

Z2(ui,a, vi+1; i) =
{ {vi+2}, if i �= n − y,

{vi+2, x n − 1 . . . x̂ . . . 1 n}, if i = n − y,

and we are done.

Theorems 3.1 and 4.1 can be used to find explicit formulae for the polynomials Ri,a(q).
Recall that we have defined, for all n ∈ Z, [n]q = ∑n−1

j=0 q j . We first need the following
observation about this function that we state as a lemma for future reference.

Lemma 4.2 Let n ∈ Z. Then

(q + 1)[n]q − q[n − 1]q = [n + 1]q − δ0,n.

Corollary 4.3 Let n, x, y ∈ N be such that 2 ≤ y < x ≤ n − 1. Denote by

Hi (q) := q[n − y − i]q + qn−y−1[x − i]q + qx−y+1[n − x + 1 − i]q

+ qn−y[y − 1 − i]q .

Then, for 2 ≤ a ≤ i, we have:

Ri,a(q) =


(1 + qx−y)[n − 1 − i]q − Hi (q), if a ∈ [2, y − 1],

[n − i]q + qx−y[n − 1 − i]q − Hi (q), if a ∈ [y, x] ,

(1 + qx−y) [n − i]q − Hi (q), if a ∈ [x + 1, n − 1].
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Proof: We proceed by a double induction on n and n − i . If n = 4 the statement is an
easy verification. So suppose that the statement is true for n −1. If i = n −2, n −1, n then,
by Theorem 3.1, Ri,a(q) can be easily reduced to the n − 1 case and hence it is a simple
verification. So suppose i < n − 2. By Lemma 4.2 it follows directly that

(q + 1)Hi+1 − qHi+2 = Hi − δ0,n−y−i−1q − δ0,x−i−1qn−y−1 (4.1)

− δ0,n−x−i q
x−y+1 − δ0,y−i−2qn−y .

Denote by

ε j :=
{

1, if j < y,

0, otherwise
and η j :=

{
1, if j ≤ x,

0, otherwise.

Observe that we have [n − i − 1 − εi+1]q − q[n − i − 2 − εi+2]q = (1 − δi+1,y−1qn−i−2)
and a similar equation where ε is substituted by η. We have, by Theorem 4.1 and (4.1),

Ri,a(q) = qRi+1,a(q) + Ri+1,i+1(q) − qRi+2,i+2(q) − δi,n−y−1q − δi,n−x qx−y+1

= q[n − i − 1 − εa]q + qqx−y[n − i − 1 − ηa]q + [n − i − 1 − εi+1]q

+ qx−y[n − i − 1 − ηi+1] − Hi − q[n − i − 2 − εi+2]q

− qqx−y[n − i − 2 − ηi+2]q + δ0,x−i−1qn−y−1 + δ0,y−i−2qn−y

= q[n − i − 1 − εa]q + qqx−y[n − i − 1 − ηa]q + (1 − δi+1,y−1qn−i−2)

+ qx−y(1 − δi+1,x qn−i−2) − Hi + δ0,x−i−1qn−y−1 + δ0,y−i−2qn−y

= [n − i − εa]q + qx−y[n − i − ηa]q − Hi

and the proof is complete.

Corollary 4.4 Let n, x, y ∈ N be such that 2 ≤ x < y ≤ n − 1. Denote by

Ki (q) := q[n − y + 1 − i]q + qn−y[y − 1 − i]q .

Then, for 2 ≤ a ≤ i, we have:

Ri,a(q) =
{

[n − 1 − i]q − Ki (q), if a ∈ [2, y − 1],

[n − i]q − Ki (q), if a ∈ [y, n − 1].

Proof: We proceed, as in the proof of Corollary 4.3, by a double induction on n and n − i .
Again the case n = 4 is an easy verification and the cases i = n −2, n −1, n follow directly
from Theorem 3.1. So suppose i < n − 2. By Lemma 4.2 we have

(q + 1)Ki+1 − qKi+2 = Ki − δ0,n−y−i q − δ0,y−i−2qn−y .
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Then, by Theorem 4.1, we have that

Ri,a(q) = qRi+1,a(q) + Ri+1,i+1(q) − qRi+2,i+2(q) − δi,n−yq

= q[n − i − 1 − εa]q + [n − i − 1 − εi+1]q − q[n − i − 2 − εi+2]q

− Ki (q) + δ0,y−i−2qn−y

= q[n − i − 1 − εa]q + (1 − δi+1,y−1qn−y) − Ki (q) + δ0,y−i−2qn−y

= [n − i − εa]q − Ki (q)

where, for j ∈ [n],

ε j :=
{

1, if j < y,

0, otherwise.
χ ( j < y)

Note that in this case Ri,a(q) doesn’t depend on x .

Remark By the explicit formulae appearing in Corollaries 4.3 and 4.4, it is easy to see
that all the polynomials Ri,a(q) have nonnegative coefficients.

Corollaries 4.4 and 4.3 give us an elementary proof of the following theorem of Shapiro,
Shapiro and Vainshtein [13, Theorem 1], which was originally proved in a geometric way:

Corollary 4.5 Let n ≥ 3 and u, v ∈ S(n), u ≤ v, be such that [2, n − 2] ⊆ DR(v). Then

Pu,v(q) =
{

1, if v1 < vn, or vn ≤ u1, or v1 ≥ un,

1 + qv1−vn , otherwise.

Proof: We proceed by induction on n. If n = 3 the statement is trivial, so suppose
n > 3. By Proposition 2.3 we can suppose that u2 < u3 < · · · < un−1. If u �= e or
{v1, vn} ∩ {1, n} �= ∅ we have that

Pu,v(q) = Pū,v̄(q) or Pu,v(q) = Pu,v(q)

by Propositions 2.3 and 2.9 and the thesis follows by induction. If u = e and {v1, vn} ∩
{1, n} = ∅

Pe,v(q) = R2,2(q) =
{

1 + qv1−vn , if v1 > vn,

1, if v1 < vn,

and we are done.

The following two results have been conjectured by Brenti and Simion [4, Conjectures 4.2
and 4.3]:
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Corollary 4.6 Let n ≥ 6. Then

Pe,n−2 n−1 n n−3...4 2 1 3(q) = 1 + 2qn−5 + qn−4.

Proof: Set x = n − 2 and y = 3. Then

Pe,n−2 n−1 n n−3...4 2 1 3(q) = R3,3(q)

= [n − 3]q + qn−5[n − 4]q − q[n − 6]q − qn−4[n − 5]q

= 1 + 2qn−5 + qn−4.

Corollary 4.7 Let n ≥ 6. Then

Pe,n−2 n−1 n n−3...3 1 2(q) = 1 + 2qn−4.

Proof: Set x = n − 2 and y = 2. Then

Pe,n−2 n−1 n n−3...3 1 2(q) = R3,3(q)

= [n − 3]q + qn−4[n − 4]q − q[n − 5]q − qn−3[n − 5]q

= 1 + 2qn−4.

The conjectures of Brenti and Simion suggest, more generally, the problem of computing
Pe,v when the first and the last three entries of v are respectively any permutation of the sets
{n − 2, n − 1, n} and {1, 2, 3}, and [4, n − 4] ⊆ DR(v).

With this purpose we let n ∈ N, n ≥ 6, and S(3) act at the same time on {1, 2, 3} in the
usual way and on {n − 2, n − 1, n} in the natural way identifying n − 2, n − 1 and n with
1, 2 and 3 respectively.

Definition ∀ (σ, τ ) ∈ S(3)×S(3) we denote by Dσ,τ (q) the following Kazhdan-Lusztig
polynomial:

Dσ,τ (q) := Pe,σ (n−2) σ (n−1) σ (n) n−3...4 τ (1) τ (2) τ (3)(q).

We conclude by showing that (unless σ = τ = e) all these polynomials admit simple
explicit formulas:

Theorem 4.8 ∀ n ≥ 6 the following formulae hold:
(1) D123,321(q) = D321,123(q) = 1,

(2) D132,321(q) = D321,132(q) = D321,213(q) = D213,321(q) = 1,

(3) D231,321(q) = D321,312(q) = 1,

(4) D321,321(q) = 1,

(5) D312,321(q) = D321,231(q) = 1 + q,

(6) D231,312(q) = 1 + qn−3,



KAZHDAN-LUSZTIG POLYNOMIALS 185

(7) D213,312(q) = D231,132(q) = D231,213(q) = D132,312(q) = 1 + qn−4,

(8) D132,213(q) = D213,132(q) = 1 + qn−5,

(9) D132,132(q) = D213,213(q) = 1 + qn−5(1 + q),
(10) D123,312(q) = D231,123(q) = 1 + 2qn−4,

(11) D123,132(q) = D132,123(q) = D213,123(q) = D123,213(q) = 1 + qn−5(2 + q),
(12) D123,231(q) = D312,123(q) = (1 + q)(1 + 2qn−5),
(13) D231,231(q) = D312,312(q) = 1 + q + qn−4,

(14) D132,231(q) = D312,132(q) = D312,213(q) = D213,231(q) = (1 + q)(1 + qn−5),
(15) D312,231(q) = (1 + q)2(1 + qn−5).

Proof: All the equalities among the Dσ,τ (q)’s in each row of Theorem 4.8 are due to
Theorem 2.8 while Eqs. (1)–(4) follows directly from Theorem 2.10. Equations (6)–(11)
are particular cases of the explicit formulae appearing in Corollary 4.3.

We sketch the proofs of the other cases leaving the details to the reader:
(5)

Pe,n n−2 n−1 n−3...1(q) = qPs1,n−2 n n−1 n−3...1(q) + Pe,n−2 n n−1 n−3...1(q)

= q + 1,

by Theorem 2.10.
(12) We would like to compute Pe,n−2 n−1 n n−3...4 2 3 1(q) using Theorem 2.5 taking i =

n−1. It’s not difficult to check that Z1(e, n−2 n−1 n n−3 . . . 4 2 1 3; n−1) = {2 1 n . . . 3}.
But

µ(2 1 n . . . 3, n − 2 n − 1 n n − 3 . . . 4 2 1 3)

= µ(2 1 n − 1 . . . 3, n − 2 n − 1 n − 3 . . . 4 2 1 3)

= 0,

by Corollary 2.4, since 2 ∈ DR(n−2 n−1 n−3 . . . 4 2 1 3)\DR(2 1 n . . . 3, n−2 n−1 n n−
3 . . . 4 2 1 3). It’s easy to check that Z2(e, n − 2 n − 1 n n − 3 . . . 4 2 1 3; n − 1) = ∅, so we
may write:

Pe,n−2 n−1 n n−3...4 2 3 1(q) = qPsn−1,n−2 n−1 n n−3...4 2 1 3(q) + Pe,n−2 n−1 n n−3...4 2 1 3(q)

= qPe,n−2 n−1 n−3...4 2 3 1(q) + Pe,n−2 n−1 n n−3...4 2 1 3(q)

= q(1 + qn−5) + 1 + 2qn−5 + qn−4

= (1 + q)(1 + 2qn−5),

by Corollary 4.3.
(13) Using Theorem 2.5 it’s easy to see that

Pe,n−1 n n−2...4 2 3 1(q) = qPsn−1,n−1 n n−2...4 2 1 3(q) + Pe,n−1 n n−2...4 2 1 3(q)

= qPe,n−1 n−2...4 2 1 3(q) + Pe,n−1 n n−2...4 2 1 3(q)

= 1 + q + qn−4,
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by Corollary 4.3.
(14) Always by Theorem 2.5 we have:

Pe,n n−2 n−1 n−3...4 2 1 3(q) = qPs1,n−2 n n−1 n−3...4 2 1 3(q) + Pe,n−2 n n−1 n−3...4 2 1 3(q)

= q(1 + qn−5) + 1 + qn−5

= (1 + q)(1 + qn−5),

by Corollary 4.3.
(15) In this case we have Z1(e, n n − 2 n − 1 n − 3 . . . 4 2 1 3; n − 1) = {2 1 n . . . 3}.
In fact, if z ∈ Z1(e, n n−2 n−1 n−3 . . . 4 2 1 3; n−1) we have {1} ∪ [3, n−1] ⊆ DR(z)

forcing z−1(1) = 2 (since z ≤ n n − 2 n − 1 n − 3 . . . 4 2 1 3). Moreover the condition
1 ∈ DL (z) forces z = 2 1 n . . . 3.

Now, by Theorem 3.1, we have

P2 1 n...3,n n−2 n−1 n−3...4 2 1 3(q) = P1 2 n...3,n−2 n n−1 n−3...4 2 1 3(q)

+ qP2 1 n...3,n−2 n n−1 n−3...4 2 1 3(q).

This implies that

µ(z, n n − 2 n − 1 n − 3 . . . 4 2 1 3) = µ(2 1 n − 1 . . . 3, n − 2 n − 1 n − 3 . . . 4 2 1 3)

= 0,

by Corollary 2.4, since 2 ∈ DR(n − 2 n − 1 n − 3 . . . 4 2 1 3)\DR(2 1 n − 1 . . . 3).
So we have, by Theorem 2.5 and repeated use of Proposition 2.3,

Pe,n n−2 n−1 n−3...4 2 3 1(q) = qPsn−1,n n−2 n−1 n−3...4 2 1 3(q) + Pe,n n−2 n−1 n−3...4 2 1 3(q)

= qP1 2 n 3...n−1,n n−2 n−1 n−3...4 2 1 3(q) + (1 + q)(1 + qn−5),

by (14). So, by Theorem 3.1 and Proposition 2.9 we may conclude that

Pe,n n−2 n−1 n−3...4 2 3 1(q) = q2 P2 1 n 3...n−1,n−2 n n−1 n−3...4 2 1 3(q)

+ qP1 2 n 3...n−1,n−2 n n−1 n−3...4 2 1 3(q) + (1 + q)(1 + qn−5)

= q2 P2 3...n−1,n−2 n−1 n−3...4 2 3(q) + q(1 + qn−5)

+ (1 + q)(1 + qn−5)

= q2(1 + qn−5) + (1 + 2q)(1 + qn−5)

= (1 + q)2(1 + qn−5),

by (7).

Remark 4.9 The only missing case from Theorem 4.8 is D123,123(q). This has turned out
to be much more difficult than the others and will be treated apart in a joint work of the
author and M. Marietti.
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