ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Discrete Polymatroids

Jürgen Herzog and Takayuki Hibi

DOI: 10.1023/A:1021852421716

Abstract

The discrete polymatroid is a multiset analogue of the matroid. Based on the polyhedral theory on integral polymatroids developed in late 1960's and in early 1970's, in the present paper the combinatorics and algebra on discrete polymatroids will be studied.

Pages: 239–268

Full Text: PDF

References

1. W. Bruns and J. Herzog, Cohen-Macaulay Rings, rev. edn., Cambridge University Press, Cambridge, 1996.
2. A. Conca and J. Herzog, “Castelnuovo-Mumford regularity of products of ideals,” preprint 2001.
3. E. De Negri, “Toric rings generated by special stable sets of monomials,” Math. Nachr. 203 (1999), 31-45.
4. E. De Negri and T. Hibi, “Gorenstein algebras of Veronese type,” J. Algebra 193 (1997), 629-639.
5. J. Edmonds, “Submodular functions, matroids, and certain polyhedra,” in Combinatorial Structures and Their Applications, R. Guy, H. Hanani, N. Sauer, and J. Schonheim (Eds.), Gordon and Breach, New York, 1970, pp. 69-87.
6. S. Fujishige, Submodular Functions and Optimization, Annals of Discrete Math, Vol. 47, North-Holland, Amsterdam, 1991.
7. I.M. Gelfand, R.M. Goresky, R.D. MacPherson, and V.V. Serganova, “Combinatorial geometry, convex polyhedra, and Schubert cells,” Advances in Math. 63 (1987), 301-316.
8. J. Herzog and Y. Takayama, “Resolutions by mapping cones,” The Roos Festschrift Vol.
2. Homology Homotopy Appl. 4 (2002), 277-294.
9. T. Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw, Glebe, N.S.W., Australia, 1992.
10. K. Murota, “Convexity and Steinitz's exchange property,” Advances in Math. 124 (1996), 272-311.
11. K. Murota, “Discrete convex analysis,” Mathematical Programming 83 (1998), 313-371.
12. K. Murota, “Discrete Convex Analysis,” to appear.
13. K. Murota and A. Shioura, “M-convex function on generalized polymatroid,” Mathematics of Operations Research 24 (1999), 95-105.
14. H. Ohsugi, J. Herzog, and T. Hibi, “Combinatorial pure subrings,” Osaka J. Math. 37 (2000), 745-757.
15. J.G. Oxley, Matroid Theory, Oxford University Press, Oxford, New York, 1992.
16. B. Sturmfels, Gr\ddot obner Bases and Convex Polytopes, Amer. Math. Soc., Providence, RI, 1995.
17. D.J.A. Welsh, Matroid Theory, Academic Press, London, 1976.
18. N. White, “A unique exchange property for bases,” Linear Algebra Appl. 31 (1980), 81-91.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition