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Abstract. The discrete polymatroid is a multiset analogue of the matroid. Based on the polyhedral theory on
integral polymatroids developed in late 1960’s and in early 1970’s, in the present paper the combinatorics and
algebra on discrete polymatroids will be studied.
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Introduction

Matroid theory is one of the most fascinating research areas in combinatorics. Let [n] =
{1, 2, . . . , n} and 2[n] the set of all subsets of [n]. For A ⊂ [n] write |A| for the cardinality
of A. A matroid on the ground set [n] is a nonempty subset M ⊂ 2[n] satisfying

(M1) if F1 ∈ M and F2 ⊂ F1, then F2 ∈ M;
(M2) if F1 and F2 belong to M and |F1| < |F2|, then there is x ∈ F2\F1 such that

F1 ∪ {x} ∈M.

The members of M are the independent sets of M. A base of M is a maximal independent
set of M. It follows from (M2) that if B1 and B2 are bases of M, then |B1| = |B2|. The set
of bases of M possesses the “exchange property” as follows:

(B) If B1 and B2 are bases of M and if x ∈ B1\B2, then there is y ∈ B2\B1 such that
(B1\{x}) ∪ {y} is a base of M.

Moreover, the set of bases of M possesses the “symmetric exchange property” as follows:

(S) If B1 and B2 are bases of M and if x ∈ B1\B2, then there is y ∈ B2\B1 such that both
(B1\{x}) ∪ {y} and (B2\{y}) ∪ {x} are bases of M.

On the other hand, given a nonempty set B ⊂ 2[n], there exists a matroid M on [n] with B
its set of bases if and only if B possesses the exchange property (B).
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Let ε1, . . . , εn denote the canonical basis vectors of Rn . If we associate each F ⊂ [n]
with

∑
i∈F εi , then a matroid on [n] may be regarded as a set of (0, 1)-vectors of Rn .

Considering nonnegative integer vectors instead of (0, 1)-vectors enables us to define the
concept of discrete polymatroids. Let Rn

+ denote the set of vectors u = (u1, . . . , un) ∈ Rn

with each ui ≥ 0. If u = (u1, . . . , un) and v = (v1, . . . , vn) are two vectors belonging to
Rn

+, then we write u ≤ v if all components vi − ui of v − u are nonnegative and, moreover,
write u < v if u ≤ v and u �= v. We say that u is a subvector of v if u ≤ v. The modulus of
u = (u1, . . . , un) ∈ Rn

+ is |u| = u1 + · · · + un . Also, let Zn
+ = Rn

+ ∩ Zn .
A discrete polymatroid on the ground set [n] is a nonempty finite set P ⊂ Zn

+ satisfying

(D1) if u ∈ P and v ∈ Zn
+ with v ≤ u, then v ∈ P;

(D2) if u = (u1, . . . , un) ∈ P and v = (v1, . . . , vn) ∈ P with |u| < |v|, then there is i ∈ [n]
with ui < vi such that u + εi ∈ P .

A base of P is a vector u ∈ P such that u < v for no v ∈ P . It follows from (D2) that if u1

and u2 are bases of P , then |u1| = |u2|. Discrete polymatroids can be also characterized in
terms of the exchange property of their bases. In fact, a nonempty finite set B ⊂ Zn

+ is the
set of bases of a discrete polymatroid on [n] if and only if B satisfies

(i) all u ∈ B have the same modulus;
(ii) if u = (u1, . . . , un) ∈ P and v = (v1, . . . , vn) ∈ P belong to B with ui > vi , then

there is j ∈ [n] with u j < v j such that u − εi + ε j ∈ B.

Consult Theorem 2.3 for the details.
In, e.g., [17, Ch. 18] and [15, p. 382] we can find the concept of polymatroids, which

originated in Edmonds [5]. A polymatroid on [n] is a nonempty compact subset P ⊂ Rn
+

satisfying

(P1) if u ∈ P and v ∈ Rn
+ with v ≤ u, then v ∈ P;

(P2) if u = (u1, . . . , un) ∈ P and v = (v1, . . . , vn) ∈ P with |u| < |v|, then there is i ∈ [n]
with ui < vi and 0 < N < vi − ui such that u + Nεi ∈P .

A brief summary of fundamental materials on polymatroids is given in Section 1. It follows
that a polymatroid P on [n] is a convex polytope in Rn . We say that a polymatroid P ⊂ Rn

+
is integral if all vertices of P are integer vectors of Rn .

Now, a combinatorial aspect of the present paper is to understand the relation between
discrete polymatroids and integral polymatroids.

Even though the following fundamental Theorems 3.4 and 4.1 are known in the areas
of combinatorial optimization and discrete convex analysis ([6, 10–13]), we want to give
a self-contained presentation for the convenience of the reader working on commutative
algebra and algebraic combinatorics.

Theorem 3.4 A nonempty finite set P ⊂ Zn
+ is a discrete polymatroid if and only if

conv(P) ⊂ Rn
+ is an integral polymatroid with conv(P) ∩ Zn = P. Here conv(P) is the

convex hull of P in Rn.
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Theorem 4.1 If u = (u1, . . . , un) and v = (v1, . . . , vn) are bases of a discrete polyma-
troid P ⊂ Zn

+, then for each i ∈ [n] with ui > vi there is j ∈ [n] with u j < v j such that
both u − εi + ε j and v − ε j + εi are bases of P.

To the reader who is eager to study these fundamental facts in detail and from a viewpoint
of applied mathematics, we strongly recommend Murota’s monograph [12] which offers
an attractive introduction to discrete convex analysis. In [12, Section 4.4], first of all,
starting from the symmetric exchange property (Theorem 4.1) it is proved that the symmetric
exchange property is equivalent to the exchange property. Second, our Theorem 3.4 is
[12, Theorem 4.12]. Finally, [12, Theorem 4.15] relates the exchange property and the
submodular function definition.

On the other hand, an algebraic aspect of the present paper is to study Ehrhart rings
and base rings together with toric ideals of discrete polymatroids. Let K be a field and let
t1, . . . , tn and s indeterminates over K . If u = (u1, . . . , un) ∈ Zn

+, then tu = tu1
1 . . . tun

n . Let
P ⊂ Zn

+ be a discrete polymatroid and B its set of bases. Let K [P] denote the homogeneous
semigroup ring K [tus: u ∈ P]. The base ring of P is the subalgebra K [B] = K [tus: u ∈
B] (∼= K [tu : u ∈ B]) of K [P]. Let K [xu : u ∈ B] denote the polynomial ring in |B| variables
over K and write IB ⊂ K [xu : u ∈ B] for the toric ideal of K [B], i.e., IB is the kernel of the
surjective K -algebra homomorphism ξ : K [xu : u ∈ B] → K [B] defined by ξ (xu) = tu for
all u ∈ B. Clearly, all symmetric relations belong to IB . More precisely, if u = (u1, . . . , un)
and v = (v1, . . . , vn) belong to B with ui > vi and u j < v j and if both u − εi + ε j and
v − ε j + εi belong to B, then the quadratic binomial xu xv − xu−εi +ε j xv−ε j +εi belong to
IB . White [18] conjectured that for a matroid all symmetric exchange relations generate
IB . It is natural to conjecture that this also holds for discrete polymatroids. Much stronger,
commutative algebraists cannot escape from the temptation to study the following problems:

(a) Does the toric ideal IB of a discrete polymatroid possess a quadratic Gröbner basis?
(b) Is the base ring K [B] of a discrete polymatroid Koszul?

These must be the most attractive research problems on base rings of discrete polymatroids.
One of our results on toric ideals of discrete polymatroids is

Theorem 5.3 (a) Suppose that each matroid has the property that the toric ideal of its base
ring is generated by symmetric exchange relations, then this is also true for each discrete
polymatroid.

(b) If P ⊂ Zn
+ is a discrete polymatroid whose set of base B satisfies the strong exchange

property (i.e., if u = (u1, . . . , un), v = (v1, . . . , vn) ∈ B, then for all i and j with ui > vi

and u j < v j one has u − εi + ε j ∈ B), then
(i) IB has a quadratic Gröbner basis, and hence K [B] is Koszul;

(ii) IB is generated by symmetric exchange relations.

It is known that if P1, . . . ,Pk ⊂ Rn
+ are polymatroid then their polymatroid sum

P1 ∨ · · · ∨ Pk =
{

x =
k∑

i=1

xi : xi ∈ Pi , 1 ≤ i ≤ k

}
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is again a polymatroid. Moreover, if each Pi is integral, then P1 ∨ · · · ∨ Pk is also integral
and for each integer vector x ∈ P1 ∨· · ·∨Pk there exist integer vectors xi ∈ Pi , 1 ≤ i ≤ k,
with x = ∑k

i=1 xi . An immediate consequence of this fact is the following important

Theorem 6.1 If P ⊂ ZN
+ is a discrete polymatroid, then the homogeneous semigroup ring

K [P] is normal.

Corollary 6.2 The base ring K [B] of a discrete polymatroid P is normal.

Thus in particular both K [P] and K [B] are Cohen–Macaulay. We will also compare
algebraic properties of K [P] with those of K [B]. See Theorem 6.3 for the details.

Once we know that both K [P] and K [B] are Cohen–Macaulay, it is natural to study
the problem when K [P] is Gorenstein and when K [B] is Gorenstein. A combinatorial
criterion for K [P] to be Gorenstein is obtained in Theorem 7.3. To classify all Gorenstein
base rings seems, however, quite difficult. We will introduce the concept of “generic”
discrete polymatroids and find a combinatorial characterization of discrete polymatroids P
satisfying the condition that (i) P is generic and (ii) the base ring of P is Gorenstein. See
Theorem 7.6.

Let P ⊂ Zn
+ be a discrete polymatroid and B the set of bases of P . The convex hull

conv(B) ⊂ Rn
+ of B is said to be the base polytope of P . What can be said about base

polytopes of discrete polymatroids? A beautiful characterization of base polytopes arising
from matroids is obtained in [7].

Let V (d)
n ⊂ Rn

+ denote the set of vectors u ∈ Rn
+ of modulus d. If Q⊂ V (d)

n is an in-
tegral convex polytope and if a = (a1, . . . , an) and b = (b1, . . . , bn) belong to Zn

+, then
we write Qa,b for the integral convex polytope which is the convex hull of all vectors
w = (w1, . . . , wn) ∈ Q ∩ Zn satisfying min{ai , bi } ≤ wi ≤ max{ai , bi } for i = 1, . . . , n.

Theorem 8.2 An integral convex polytope Q⊂ V (d)
n is the base polytope of a discrete

polymatroid P ⊂ Zn
+ of rank d if and only if, for any vectors a and b belonging to Zn

+,

the integral convex polytope Qa,b possesses the property that if u and v are vertices of Qa,b

and if the segment conv{u, v} is an edge of Qa,b, then v − u is of the form 
(εi − ε j ), where
i �= j and 0 �= 
 ∈ Z+.

We say that a convex polytope P ⊂ Rn of dimension e is simple if each vertex of P
belongs to just e edges of P .

Corollary 8.3 Let P ⊂ Zn
+ be a discrete polymatroid with B the set of its bases. Suppose

that the base polytope conv(B) ⊂ Rn
+ is simple. Then the base ring K [B] is a K -algebra

with isolated singularity.

Finally, in Section 9, two simple techniques to construct discrete polymatroids will be
studied.
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1. Polymatroids

The present section is a brief summary, based on [17, Ch. 18], of fundamental materials on
polymatroids. Fix an integer n > 0 and set [n] = {1, 2, . . . , n}. The canonical basis vectors of
Rn will be denoted by ε1, . . . , εn . Let Rn

+ denote the set of those vectors u = (u1, . . . , un) ∈
Rn with each ui ≥ 0, and Zn

+ = Rn
+ ∩ Zn . For a vector u = (u1, . . . , un) ∈ Rn

+ and for a
subset A ⊂ [n], we set

u(A) =
∑
i∈A

ui .

Thus in particular u({i}), or simply u(i), is the i th component ui of u. The modulus of
u is

|u| = u([n]) =
n∑

i=1

ui .

Let u = (u1, . . . , un) and v = (v1, . . . , vn) be two vectors belonging to Rn
+. We write u ≤ v

if all components vi − ui of v − u are nonnegative and, moreover, write u < v if u ≤ v and
u �= v. We say that u is a subvector of v if u ≤ v. In addition, we set

u ∨ v = (max{u1, v1}, . . . , max{un, vn}),
u ∧ v = (min{u1, v1}, . . . , min{un, vn}).

Thus u ∧ v ≤ u ≤ u ∨ v and u ∧ v ≤ v ≤ u ∨ v.

Definition 1.1 A polymatroid on the ground set [n] is a nonempty compact subset P in
Rn

+, the set of independent vectors, such that

(P1) every subvector of an independent vector is independent;
(P2) if u, v ∈ P with |v| > |u|, then there is a vector w ∈ P such that

u < w ≤ u ∨ v.

A base of a polymatroid P ⊂ Rn
+ is a maximal independent vector of P , i.e., an inde-

pendent vector u ∈ P with u < v for no v ∈ P . Every base of P has the same modulus
rank(P), the rank of P . In fact, if u and v are bases of P with |u| < |v|, then by (P2) there
exists w ∈ P with u < w ≤ u ∨ v, contradicting the maximality of u.

Let P ⊂ Rn
+ be a polymatroid on the ground set [n]. Let 2[n] denote the set of all

subsets of [n]. The ground set rank function of P is a function ρ : 2[n] → R+ defined by
setting

ρ(A) = max{v(A): v ∈ P}

for all ∅ �= A ⊂ [n] together with ρ(∅) = 0.
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Proposition 1.2 (a) Let P ⊂ Rn
+ be a polymatroid on the ground set [n] and ρ its ground

set rank function. Then ρ is nondecreasing, i.e., if A ⊂ B ⊂ [n], then ρ(A) ≤ ρ(B), and is
submodular, i.e.,

ρ(A) + ρ(B) ≥ ρ(A ∪ B) + ρ(A ∩ B)

for all A, B ⊂ [n]. Moreover, P coincides with the compact set

{x ∈ Rn
+: x(A) ≤ ρ(A), A ⊂ [n]}. (1)

(b) Conversely, given a nondecreasing and submodular function ρ: 2[n] → R+ with
ρ(∅) = 0, the compact set (1) is a polymatroid on the ground set [n] with ρ its ground set
rank function.

It follows from Proposition 1.2 (a) that a polymatroid P ⊂ Rn
+ on the ground set [n] is

a convex polytope in Rn . In addition, the set of bases of P is a face of P with supporting
hyperplane

{
x = (x1, . . . , xn) ∈ Rn:

n∑
i=1

xi = rank(P)

}
.

We refer the reader to, e.g., [9] for basic terminologies on convex polytopes.
How can we find the vertices of a polymatroid? A complete answer was obtained by

Edmonds [5]. We will associate any permutation π = (i1, . . . , in) of [n] with A1
π =

{i1}, A2
π = {i1, i2}, . . . , An

π = {i1, . . . , in}.

Proposition 1.3 Let P ⊂ Rn
+ be a polymatroid on the ground set [n] and ρ its ground

set rank function. Then the vertices of P are all points v = v(k, π ) ∈ Rn
+, where v =

(v1, . . . , vn) and

vi1 = ρ
(

A1
π

)
,

vi2 = ρ
(

A2
π

) − ρ
(

A1
π

)
,

vi3 = ρ
(

A3
π

) − ρ
(

A2
π

)
,

· · ·
vik = ρ

(
Ak

π

) − ρ
(

Ak−1
π

)
,

vik+1 = vik+2 = · · · = vin = 0,

and k ranges over the integers belonging to [n], and π = (i1, . . . , in) ranges over all
permutations of [n]. In particular the vertices of the face of P consisting of all bases of P
are all points v = v(n, π ) ∈ Rn

+, where π ranges over all permutations of [n].
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We say that a polymatroid is integral if all of its vertices have integer coordinates; in
other words, a polymatroid is integral if and only if its ground set rank function is integer
valued.

LetP1, . . . ,Pk be polymatroids on the ground set [n]. The polymatroid sumP1 ∨· · ·∨Pk

of P1, . . . ,Pk is the compact subset in Rn
+ consisting of all vectors x ∈ Rn

+ of the form

x =
k∑

i=1

xi , xi ∈ Pi .

Proposition 1.4 Let P1, . . . ,Pk be polymatroids on the ground set [n] and ρi the ground
set rank function of Pi , 1 ≤ i ≤ k. Then the polymatroid sum P1 ∨· · ·∨Pk is a polymatroid
on [n] and

∑k
i=1 ρi is its ground set rank function. Moreover, if each Pi is integral, then

P1 ∨ · · · ∨Pk is integral, and for each integer vector x ∈ P1 ∨ · · · ∨Pk there exist integer
vectors xi ∈ Pi , 1 ≤ i ≤ k, with x = ∑k

i=1 xi .

2. Discrete polymatroids

In this section we introduce discrete polymaroids. They may be viewed as generalizations
of matroids.

Definition 2.1 Let P be a nonempty finite set of integer vectors in Rn
+ which contains

with each u ∈ P all its integral subvectors. The set P is called a discrete polymatroid on
the ground set [n] if for all u, v ∈ P with |v| > |u|, there is a vector w ∈ P such that

u < w ≤ u ∨ v.

A base of P is a vector u ∈ P such that u < v for no v ∈ P . We denote B(P) the set of
bases of a discrete polymatroid P . Just as for polymatroids one proves that all elements in
B(P) have the same modulus. This common number is called the rank of P .

The following simple lemma is useful for induction arguments.

Lemma 2.2 Let P be a discrete polymatroid.
(a) Let d ≤ rank P. Then the set P ′ = {u ∈ P: |u| ≤ d} is a discrete polymatroid of rank

d with the set of bases {u ∈ P: |u| = d}.
(b) Let x ∈ P. Then the set Px = {v − x : v ≥ x} is a discrete polymatroid of rank

d − |x |.

Proof: (a) Let u, v ∈ P with d ≥ |v| > |u|. There exists w ∈ P such that u < w ≤ u∧v.
Since w > u, and since P contains all subvectors of w, there exists an integer i such that
u + εi ≤ w. Then u < u + εi ≤ u ∧ v, and since u + εi ≤ d, it belongs to P ′. This proves
that P ′ is a discrete polymatroid. It is clear that {u ∈ P : |u| = d} is the set of bases of P ′.

(b) Let u′, v′ ∈ Px with |v′| > |u′|, and set u = u′ + x and v = v′ + x . Then u, v ∈ P
and |v| > |u|. Hence there exists w ∈ P with u < w ≤ u ∧ v. Set w′ = w − x . Then
w′ ∈ Px and u′ < w′ ≤ u′ ∧ v′. �
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Discrete polymatroids can be characterized in terms of their set of bases as follows:

Theorem 2.3 Let P be a nonempty finite set of integer vectors in Rn
+ which contains with

each u ∈ P all its integral subvectors, and let B(P) be the set of vectors u ∈ P with u < v

for no v ∈ P. The following conditions are equivalent:
(a) P is a discrete polymatroid;
(b) if u, v ∈ P with |v| > |u|, then there is an integer i such that u + εi ∈ P and

u + εi ≤ u ∨ v;

(c) (i) all u ∈ B(P) have the same modulus,
(ii) if u, v ∈ B(P) with u(i) > v(i), then there exists j with u( j) < v( j) such that

u − εi + ε j ∈ B(P).

Proof: That (a) implies (b) was already shown in the proof of 2.2, and implication (b) ⇒
(a) is trivial.

(b) ⇒ (c): We noticed already that (c)(i) holds. Thus it remains to prove (c)(ii). Let u, v ∈
B(P) with u(i) > v(i) for some i . Then u(i)−1 ≥ v(i), and hence |u −εi | = |v|−1 < |v|.
Thus by (b) there exists an integer j such that (u − εi ) + ε j ≤ (u − εi ) ∧ v. We have j �= i ,
because otherwise u(i) = (u−εi +ε j )(i) ≤ max{u(i)−1, v(i)} = u(i)−1, a contradiction.
Thus u( j) + 1 = (u − εi + ε j )( j) ≤ max{u( j), v( j)} ≤ v( j), that is, v( j) > u( j).

(c) ⇒ (b): Let v, u ∈ P with |v| > |u|, and let w′ ∈ B(P) with u < w′. Since all
w′ ∈ B(P) have the same modulus, it follows that |v| ≤ |w′|. Thus we can choose a
subvector w of w′ in P with u ≤ w and |w| = |v|. Let P ′ = {x ∈ P : |x | ≤ |v|}. By 2.2(a),
P ′ is a discrete polymatroid, and hence by the implication (b) ⇒ (c) which we have already
shown, we know that w and v satisfy the exchange property (c)(ii).

Suppose that w( j) ≤ max{u( j), v( j)} for all j . Since u( j) ≤ w( j) for all j , it follows
that w( j) ≤ v( j) for all j . However since |w| = |v|, this implies w = v. Then u < v, and
the assertion is trivial.

Now assume that there exists an integer j such that w( j) > max{u( j), v( j)}. Then by
the exchange property, there exists an integer i with v(i) > w(i) such that w − εi + ε j ∈ P .
Since u + εi is a subvector of w − ε j + εi , it follows that u + εi ∈ P . Furthermore we have
(u + εi )(i) = u(i) + 1 ≤ w(i) + 1 ≤ v(i), so that u + εi ≤ u ∧ v. �

The following corollary is immediate from 2.3 and the definition of a matroid.

Corollary 2.4 Let B be a nonempty finite set of integer vectors in Rn
+. The following

conditions are equivalent:
(a) B is the set of bases of a matroid;
(b) B is the set of bases of a discrete polymatroid, and for all u ∈ B one has u(i) ≤ 1 for

i = 1, . . . , n.

The exchange property 2.3(c)(ii) suggests the following

Definition 2.5 Let B be a nonempty set of integer vectors which have the same modulus.
Then B satisfies:
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(W) the weak exchange property, if for all u, v ∈ B, u �= v, there exist i and j with u(i) > v(i)
and u( j) < v( j) such that u − εi + ε j ∈ B,

(S) the strong exchange property, if for all u, v ∈ B, u �= v, and all i and j with u(i) > v(i)
and u( j) < v( j) one has u − εi + ε j ∈ B.

Example 2.6 (a) Let B be the set of bases of a polymatroid on the ground set [n] with
n ≤ 3. It is immediate that B satisfies the strong exchange property.

(b) The set {(1, 1, 1, 1), (0, 2, 0, 2), (0, 1, 1, 2), (1, 2, 0, 1)} is the set of bases of a discrete
polymatroid. It does not satisfy the strong exchange property.

(c) Let s1, . . . , sn and d be nonnegative integers. The set

V = {u: u(i) is an integer with 0 ≤ u(i) ≤ si and |u| = d}

is called of Veronese type. It satisfies the strong exchange property.
In fact, let u, v ∈ V with u(i) > v(i) and u( j) < v( j) then u(i) − 1 ≥ 0 and u( j) + 1 ≤

s j , so that u − εi + ε j ∈ V .
(d) The set {(2, 1, 1), (2, 2, 0), (3, 0, 1), (3, 1, 0} (4, 0, 0)} satisfies the strong exchange

property, but is not of Veronese type.
(e) A set S of integral vectors in Rn

+ of modulus d is called strongly stable, if for all
u ∈ S, all i with u(i) > 0 and all j < i , one has that u − εi + ε j ∈ S. The strongly stable
set {(3, 0, 1), (1, 3, 0), (3, 1, 0), (2, 2, 0), (4, 0, 0)} does not satisfies the weak exchange
property. But any strongly stable set S satisfies the following somewhat weaker exchange
property: for all u, v ∈ S there exist integers i and j such that u(i) > v(i) and u( j) < v( j),
and either u − εi + ε j ∈ S, or v − ε j + εi ∈ S.

Indeed, let u, v ∈ S, u �= v. Then there is an integer i such that u(i) > v(i). Let i be
the largest such number. If u( j) = v( j) for all j > i , then, since u and v have the same
modulus, there exists j < i with u( j) < v( j). Since S is strongly stable it follows that
u − εi + ε j ∈ S. On the other hand, if u( j) < v( j) for some j > i , then v − ε j + εi ∈ S,
since S is strongly stable.

(f ) A strongly stable set S is called principal, if there exists an element u ∈ S such that
the smallest strongly stable set containing u coincides with S. In that case u is called the
Borel generator of S. The set in example (d) is a strongly stable principal set with Borel
generator (2, 1, 1).

A strongly stable principal set satisfies the exchange property of 2.3(c)(ii), i.e. it is the
set of bases of a polymatroid. This will follow from Example 9.4 in Section 9. On the other
hand, the set

{(0, 1, 0, 1), (0, 1, 1, 0), (0, 2, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0), (2, 0, 0, 0)}

is strongly stable principal with Borel generator (0, 1, 0, 1), but does not satisfy the strong
exchange property.

We close this section with the following
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Theorem 2.7 Let P be a nonempty finite set of integer vectors in Rn
+ which contains with

each u ∈ P all its integral subvectors. The following conditions are equivalent:
(a) P is a discrete polymatroid of rank d on the ground set [n];
(b) B = {(u, d − |u|): u ∈ P} is the set of bases of a discrete polymatroid of rank d on the

ground set [n + 1].

Proof: (a) ⇒ (b): We will show that B satisfies condition (c) of 2.3. Let u,v ∈ P, i =
d − |u|, j = d − |v| and set u′ = (u, i) and v′ = (v, j). We may suppose that |v| ≥ |u|, so
that j ≤ i . If i = j , then u and v are bases of P ′ = {w ∈ P : |w| ≤ d − i}, see 2.2. Thus u′

and v′ satisfy the exchange property 2.3(c)(ii), and hence we may assume that j < i . We
consider two cases.

In the first case assume that v′(k) > u′(k) for some k. Then k ≤ n, and v − εk ∈ P , since
v − εk is a subvector of v, and so v′ − εk + εn+1 ∈ B.

In the second case assume that u′(k) > v′(k) for some k. Since |v| > |u|, 2.3(b) implies
that there exists an integer l such that u + εl ∈ P and u + εl ≤ u ∧ v. It follows that
u(l) < u(l) + 1 ≤ v(l). If k ≤ n, then u − εk + εl ∈ P , because it is a subvector of u − εl .
Hence u′ −εk +εl = (u −εk +εl ,i) ∈ B. On the other hand, if k = n +1, that is, u′(k) = i ,
then u′ − εk + εl = (u + εl ,i − 1) ∈ B, because u + εl ∈ P .

(b) ⇒ (a): Let u,v ∈ P with |v| > |u|. Then d − |v| < d − |u|, and so by the exchange
property of B there exists an integer i with v(i) > u(i) and such that (u + εi , d − |u|) ∈ B.
This implies that u + εi ∈ P , and since v(i) > u(i) we also have that u + εi ≤ u ∧ v. �

Theorem 2.7 may be regarded as a version of [6, Theorem 3.58].

3. Integral polymatroids and discrete polymatroids

The purpose of the present section is to show our first fundamental Theorem 3.4 which says
that a nonempty finite set P ⊂ Zn

+ is a discrete polymatroid if and only if conv(P) ⊂ Rn
+

is an integral polymatroid with conv(P) ∩ Zn = P . Here conv(P) is the convex hull of P
in Rn .

First of all, we collect a few basic lemmata on integral polymatroids and discrete poly-
matroids which will be required to prove Theorem 3.4.

Lemma 3.1 If P ⊂ Rn
+ is an integral polymatroid and if u,v ∈ P ∩ Zn with |v| > |u|,

then there is w ∈ P ∩ Zn such that u < w ≤ u ∨ v.

Lemma 3.1 appears (not explicitly) in [17, Lemma 5, p. 340]. Its proof is also valid to
show Lemma 3.1 by noting that the ground set rank function ρ of an integral polymatroid
P is integer valued.

Let P ⊂ Zn
+ be a discrete polymatroid and B(P) the set of bases of P . We define the

nondecreasing function ρP : 2[n] → R+ associated with P by setting

ρP (X ) = max{u(X ) : u ∈ B(P)}

for all ∅ �= X ⊂ [n] together with ρP (∅) = 0.
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In general, for u, v ∈ B(P) we define the distance between u and v by

dis(u, v) = 1

2

n∑
i=1

|u(i) − v(i)|.

A crucial property of dis(u, v) is that if u(i) > v(i) and u( j) < v( j) together with u′ =
u − εi + ε j ∈ B(P), then dis(u, v) > dis(u′, v).

Lemma 3.2 If X1 ⊂ X2 ⊂ · · · ⊂ Xs ⊂ [n] is a sequence of subsets of [n], then there is
u ∈ B(P) such that u(Xk) = ρP (Xk) for all 1 ≤ k ≤ s.

Proof: We work with induction on s and suppose that there is u ∈ B(P) such that u(Xk) =
ρP (Xk) for all 1 ≤ k < s. Choose v ∈ B(P) with v(Xs) = ρP (Xs). If u(Xs) < v(Xs), then
there is i ∈ [n] with i /∈ Xs such that u({i}) > v({i}). The exchange property 2.3(c)(ii)
says that there is j ∈ [n] with u( j) < v( j) such that u1 = u − εi + ε j ∈ B(P). Since
u(Xs−1) = ρP (Xs−1), it follows that j /∈ Xs−1. Hence u1(Xk) = ρP (Xk) for all 1 ≤ k < s.
Moreover, u1(Xs) ≥ u(Xs) and dis(u, v) > dis(u1, v).

If u1(Xs) = v(Xs), then u1 is a desired base of P . If u1(Xs) < v(Xs), then the above
technique will yield a base u2 of P such that u2(Xk) = ρP (Xk) for all 1 ≤ k < s, u2(Xs) ≥
u1(Xs) and dis(u1, v) > dis(u2, v). It is now clear that repeated applications of this argument
guarantee the existence of a base uq of P such that uq (Xk) = ρP (Xk) for all 1 ≤ k ≤ s.

�

Corollary 3.3 The function ρP : 2[n] → R+ is submodular.

Proof: Let A, B ⊂ [n]. By Lemma 3.2 there is u ∈ B(P) such that u(A ∩ B) = ρP (A ∩ B)
and u(A ∪ B) = ρP (A ∪ B). Hence

ρP (A) + ρP (B) ≥ u(A) + u(B)

= u(A ∪ B) + u(A ∩ B)

= ρP (A ∪ B) + ρP (A ∩ B),

as desired. �

We now come to our first fundamental

Theorem 3.4 A nonempty finite set P ⊂ Zn
+ is a discrete polymatroid if and only if

conv(P) ⊂ Rn
+ is an integral polymatroid with conv(P) ∩ Zn = P.

Proof: The “if” part follows from Lemma 3.1. To see why the “only if” part is true, let
P ⊂ Zn

+ be a discrete polymatroid and ρP : 2[n] → R+ the nondecreasing and submodular
function associated with P . Write P ⊂ Rn

+ for the integral polymatroid with ρP its ground
set rank function, i.e.,

P = {u ∈ Rn
+: u(X ) ≤ ρP (X ), X ⊂ [n]}.
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Since each base u of P satisfies u(X ) ≤ ρP (X ) for all X ⊂ [n], it follows that P ⊂ P .
Moreover, since P is convex, one has conv(P) ⊂ P . Now, Lemma 3.2 together with
Proposition 1.3 guarantees that all vertices of P belong to P . Thus P = conv(P).

To complete our proof we must show P ∩ Zn = P . For each i ∈ [n], write Pi ⊂ Zn
+

for the discrete polymatroid Pεi in the notation of Lemma 2.2(b) and Bi = B(Pi ), the set
of bases of Pi . We compute the nondecreasing and submodular function ρPi : 2[n] → R+
associated with Pi . We distinguish three cases:

(a) Let i /∈ X ⊂ [n] with ρP (X ∩ {i}) > ρP (X ). Choose u ∈ B(P) with u(X ) = ρP (X )
and with u(X ∪{i}) = ρP (X ∪ {i}). Then u(i) = u(X ∪ {i})−u(X ) ≥ 1 and u ∈ B(P).
Since i /∈ X , one has (u−εi )(X ) = u(X ). Since (u−εi )(X ) ≤ ρPi (X ) ≤ ρP (X ) = u(X ),
it follows that ρPi (X ) = ρP (X ).

(b) Let i /∈ X ⊂ [n] with ρP (X ∪ {i}) = ρP (X ). If u ∈ B(P) with u(i) ≥ 1, then

(u − εi )(X ) ≤ (u − εi )(X ∪ {i})
= u(X ∪ {i}) − 1

≤ ρP (X ∪ {i}) − 1 = ρP (X ) − 1.

Thus ρPi (X ) ≤ ρP (X ) − 1. Choose v ∈ B(P) with v(X ) = ρP (X ). Then v(i) = 0.
(Otherwise, since i /∈ X, ρP (X ∪ {i}) ≥ v(X ∪ {i}) = v(X ) + v(i) > v(X ) = ρP (X ),
a contradiction.) Let u0 ∈ B(P) with u0(i) ≥ 1. Then the exchange property says that
there is j ∈ [n] with u0( j) < v( j) such that u0 − εi + ε j ∈ B(P). Thus we assume
u0(i) = 1. If u0(X ) < v(X ) − 1, then u0(X ∪ {i}) = u0(X ) + 1 < v(X ) = v(X ∪ {i}).
Thus there is j /∈ X ∪ {i} with u0( j) > v( j). Hence there is i �= k ∈ [n] with
u0(k) < v(k) such that u1 = u0 = ε j + εk ∈ B(P). Then u1(i) = 1, u1(X ) ≥ u0(X )
and dis(u0, v) > dis(u1, v). Thus, as in the proof of Lemma 3.2, we can find u ∈ B(P)
with u(i) = 1 such that u(X ) = (u − εi )(X ) = v(X ) − 1. Hence ρPi (X ) = ρP (X ) − 1.

(c) Let i ∈ X ⊂ [n]. Then ρPi (X ) = ρP (X ) − 1. In fact, since i ∈ X , by Lemma 3.2 there
is u ∈ B(P) with u(i) = ρP ({i}) ≥ 1 and with u(X ) = ρP (X ). Then (u − εi )(X ) =
ρP (X ) − 1.

Let Pi ∈ Rn
+ denote the integral polymatroid with ρPi its ground set rank function. Then

Pi = conv(Pi ) and, working with induction on the rank of P enables us to assume that
Pi ∩ Zn = Pi . If x ∈ P ∩ Zn with x(i) ≥ 1, then y = x − εi belongs to Pi . (In fact, if
i /∈ X ⊂ [n] with ρPi (X ) = ρP (X ) − 1, then ρP (X ∪ {i}) = ρP (X ). Thus replacing u with
x in the inequalities (u − εi )(X ) ≤ · · · = ρP (X ) − 1 appearing in the discussion (b) shows
that y(X ) ≤ ρPi (X ).) Thus y ∈ Pi ∩ Zn = Pi . Hence y ≤ u − εi for some u ∈ B(P) with
u(i) ≥ 1. Thus x ≤ u ∈ B(P) and x ∈ P . Hence P ∩ Zn = P , as desired. �

4. The symmetric exchange theorem for polymatroids

We now establish our second fundamental theorem on discrete polymatroids; the symmetric
exchange theorem.
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Theorem 4.1 If u = (a1, . . . ,an) and v = (b1, . . . ,bn) are bases of a discrete polymatroid
P ⊂ Zn

+, then for each i ∈ [n] with ai > bi there is j ∈ [n] with a j < b j such that both
u − εi + ε j and v − ε j + εi are bases of P.

Proof: Let B ′ denote the set of those bases w of P with u ∧ v ≤ w ≤ u ∨ v. It then turns
out that B ′ satisfies the exchange property 2.3(c)(ii) for polymatroids. Thus B ′ is the set of
bases of a discrete polymatroid P ′ ⊂ Zn

+. Considering u′ = u − u ∧ v and v′ = v − u ∧ v

instead of u and v, we will assume that P ′ ⊂ Zs
+ is a discrete polymatroid, where s ≤ n, and

u = (a1, . . . , ar , 0, . . . , 0) ∈ Zs
+, v = (0, . . . , 0, br+1, . . . , bs) ∈ Zs

+,

where each 0 < ai and each 0 < b j and where |u| = |v| = rank(P ′). Our work is to show
that for each 1 ≤ i ≤ r there is r + 1 ≤ j ≤ s such that both u − εi + ε j and v − ε j + εi

are bases of P ′. Let, say, i = 1.

First case: Suppose that u − ε1 + ε j are bases of P ′ for all r + 1 ≤ j ≤ s. It follows from
the exchange property that, given arbitrary r integers a′

1, . . . , a′
r with each 0 ≤ a′

i ≤ ai ,
there is a base w′ of P ′ of the form

w′ = (a′
1, . . . , a′

r , b′
r+1, . . . , b′

s),

where each b′
j ∈ Z with 0 ≤ b′

j ≤ b j . Thus in particular there is r + 1 ≤ j0 ≤ s such that
v − εj0 + ε1 is a base of P ′. Since u − ε1 + ε j is a base of P ′ for each r + 1 ≤ j ≤ s, both
u − ε1 + εj0 and v − εj0 + ε1 are bases of P ′, as desired.

Second case: Let r ≥ 2 and r +2 ≤ s. Suppose that there is r +1 ≤ j ≤ s with u−ε1 +ε j /∈
P ′. Let X ⊂ {r+1, . . . , s} denote the set of those r+1 ≤ j ≤ s with u−ε1+ε j /∈ P ′. Recall
that Theorem 3.4 guarantees that conv(P ′) ⊂ Rs

+ is an integral polymatroid on the ground
set [s] with conv(P ′) ∩ Zs = P ′. Let ρ = ρP ′ denote the ground set rank function of the
integral polymatroid conv(P ′) ⊂ Rs

+. Thus ρ(Y ) = max{w(Y ) : w ∈ B ′} for ∅ �= Y ⊂ [s]
together with ρ(∅) = 0. In particular ρ(Y ) = u(Y ) if Y ⊂ {1, . . . , r} and ρ(Y ) = v(Y ) if
Y ⊂ {r + 1, . . . , s}.

For each j ∈ X , since u − ε1 + ε j /∈ conv(P ′), there is a subset A j ⊂ {2, 3, . . . , r} with

ρ(A j ∪ { j}) ≤ u(A j ).

Thus

ρ({2, 3, . . . , r} ∪ { j}) ≤ ρ(A j ∪ { j}) + ρ({2, 3, . . . , r}\A j )

≤ u(A j ) + u({2, 3, . . . , r}\A j )

= u({2, 3, . . . , r}) = ρ({2, 3, . . . , r}).

Hence, for all j ∈ X ,

ρ({2, 3, . . . , r} ∪ { j}) = u({2, 3, . . . , r}).
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By [15, Lemma 1.3.3] it follows that

ρ({2, 3, . . . , r} ∪ X ) = u({2, 3, . . . , r}).

Now, since ρ is submodular,

ρ({2, 3, . . . , r} ∪ X ) + ρ({1} ∪ X ) ≥ ρ(X ) + ρ({1, 2, . . . , r} ∪ X )

= v(X ) + rank(P ′).

Thus

u({2, 3, . . . , r}) + ρ({1} ∪ X ) ≥ v(X ) + rank(P ′).

Since

rank(P ′) − u({2, 3, . . . , r}) = a1, and

ρ({1} ∪ X ) ≤ ρ({1} + ρ(X ) = a1 + v(X ),

it follows that

ρ({1} ∪ X ) = a1 + v(X ).

Hence, for all X ′ ⊂ X ,

a1 + v(X ) = a1 + v(X ′) + v(X\X ′)
= ρ({1} + ρ(X ′) + ρ(X\X ′)
≥ ρ({1} ∪ X ′) + ρ(X\X ′)
≥ ρ({1} ∪ X )

= a1 + v(X ).

Thus, for all X ′ ⊂ X ,

ρ({1} ∪ X ′) = a1 + v(X ′).

By virtue of Lemma 3.2 there is a base w of P ′ with w(1) = a1 and with w( j) = v( j)
(= ρ({ j})) for all j ∈ X . Again the exchange property (for w and v) guarantees that for
each 1 ≤ i ≤ r with w(i) > 0 there is j ∈ {r + 1, . . . , s}\X such that w − εi + ε j , is a
base of P ′. Hence repeated applications of the exchange property yield a base of w′ of P ′

of the form w′ = v − ε j0 + ε1, where j0 ∈ {r + 1, . . . , s}\X . Hence both u − ε1 + ε j0 and
v − ε j0 + ε1 are bases of P ′, as required. �
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5. Base rings of discrete polymatroids and their relations

Let K be a field, and P a discrete polymatroid with the set of bases B. The toric ring K [B]
generated over K by the monomials tu = ∏

i t u(i)
i , u = (u(1), . . . , u(n)) ∈ B, is called the

base ring of P . Let S = K [xu : u ∈ B] be the polynomial ring in the indeterminates xu with
u ∈ B. Let IB be the kernel of the K -algebra homomorpism ξ : S → K [B] with ξ (xu) = tu .
There are some obvious elements in IB , namely, those arising from symmetric exchange: Let
u, v ∈ B with u(i) > v(i) and u( j) < v( j), such that u − εi + ε j and v − ε j + εi belong to
B. Then clearly xu xv − xu−εi +ε j xv−ε j +εi ∈ IB . We call such a relation a symmetric exchange
relation. White conjectured (cf. [18]) that for a matroid the symmetric exchange relations
generate IB . It is natural to conjecture that this also holds for discrete polymatroids.

In order to formulate the next result we have to recall the notion of sortability, introduced
by Sturmfels [16]:

Let u, v ∈ B, and write tutv = ti1 . . . ti2d with i1 ≤ i2 ≤ · · · ≤ i2d . Then we set
tu′ = ∏d

j t2 j−1 and tv′ = ∏d
j t2 j . This defines a map

sort: B × B → Md × Md , (u, v) → (u′, v′),

where Md denotes the set of all integer vectors of modulus d.
The map ‘sort’ is called the sorting operator, and B is called sortable, if Im(sort) ⊆ B×B.
The pair (u, v) is called sorted if (u, v) ∈ Im(sort), equivalently, if sort(u, v) = (u, v). It

is clear from the definition that (u, v) is sorted if and only if

u(1) + · · · + u(i) − 1 ≤ v(1) + · · · + v(i) ≤ u(1) + · · · + u(i) for i = 1, . . . , n.

This implies that u −v is vector with entries ±1 and 0. To such a vector we attach sequence
of + and − signs: reading from the left to right we put the sign + or the sign − if we reach
the entry +1 or the entry −1. For example to (0, 1, 1, 0, −1, −1) belongs the sequence
+ + −−.

For the above characterization of sorted pairs one easily deduces

Lemma 5.1 The following conditions are equivalent:
(a) (u, v) or (v, u) is sorted;
(b) u − v is a vector with entries ±1 and 0 and with ±-sequence + − + − · · · + −.

In [3], De Negri noticed the following fact which easily follows from a theorem of
Sturmfels [16].

Lemma 5.2 Suppose B ⊂ Md is sortable. Then IB has a Gröbner basis consisting of the
sorting relations xu xv − xu′ xv′ with u,v ∈ B and (u′,v′) = sort(u,v).

The main result of this section is

Theorem 5.3 (a) Suppose that each matroid has the property that the toric ideal of its base
ring is generated by symmetric exchange relations, then this is also true for each discrete
polymatroid.
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(b) If P is a discrete polymatroid whose set of bases B satisfies the strong exchange
property, then
(i) B is sortable, and hence IB has a quadratic Gröbner basis and K [B] is Koszul,

(ii) IB is generated by symmetric exchange relations.

For the proof of 5.3(a) we shall need.

Lemma 5.4 Let u1, . . . ,ud ∈ B. Then, modulo exchange relations,
∏d

j xu j can be rewrit-

ten as
∏d

j xv j with |v j (i) − vk(i)| ≤ 1 for all i, j, k.

Proof: Suppose that for some i, k and l we have |uk(i) − ul(i)| > 1. Without loss of
generality we may assume that k = 1, l = 2 and u1(i) > u2(i). By the symmetric exchange
property there exists j with u2( j) > u1( j) such that u1 − εi + ε j , u2 − ε j + εi ∈ B.

We set

u′
k =




uk, for k �= 1, 2,

u1 − εi + ε j , for k = 1,

u2 − ε j + εi , for k = 2.

It is clear that u′
1(i) − u′

2(i) = u1(i) − u2(i) − 2 ≥ 0.
We introduce the number

ci (u1, . . . , ud ) =
∑

1≤k<l≤d

|uk(i) − ul(i)|.

Then ck(u1, . . . , ud ) = ck(u′
1, . . . , u′

d ) for k �= i, j .
It is easy to show that

ci (u
′
1, . . . , u′

d ) < ci (u1, . . . , ud ), (2)

and

c j (u
′
1, . . . , u′

d ) ≤ c j (u1, . . . , ud ). (3)

Thus, induction completes the proof. �

Proof: [Proof of 5.3] (a) Let
∏

j xu j − ∏
j xv j ∈ IB . Applying Lemma 5.4 we may

assume that for all j and k, all components of u j and uk , and of v j and vk differ at most
by 1. Let w = ∑d

j u j = ∑d
j v j , and for i = 1, . . . , n let ai − min{u j (i) : j = 1, . . . , d}, and

similarly bi = min{v j (i) : j = 1, . . . , d}. Then u j (i) = ai or u j (i) = ai + 1. Let ki be the
number of j with u j (i) = ai + 1. Then w(i) = ∑d

j=1 u j (i) = dai + ki . Since 0 ≤ ki < d,
we conclude that ai = [w(i)/d], where �c� denotes the integer part of a number c. In
particular it follows that ai = bi for i = 1, . . . , n.
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Now we consider the following subset

B ′ = {u ∈ B : ai ≤ u(i) ≤ ai + 1}

of B. The vectors u1, . . . , ud and v1, . . . , vd belong to B ′, and B ′ is closed under the
exchange relations.

We may identify B ′ with the set of bases of a matroid B ′′, via the assignment u �→
u∗ = u − (a1, . . . , an). Then the relation

∏
j xu j − ∏

j xv j ∈ IB corresponds to the relation∏
j xu∗

j
− ∏

j xv∗
j
∈ IB ′′ . By our hypothesis,

∏
j xu∗

j
− ∏

j xv∗
j

reduces to 0 modulo the sym-
metric exchange relations of B ′′. Thus

∏
j xu j −

∏
j xv j reduces to 0 modulo the symmetric

exchange relations of B ′, and hence of B.
(b) (i) Let (u, v) ∈ B × B. In the proof of (a) we have shown that by a finite number of

exchanges we can transform the pair (u, v) into a pair whose difference vector has entries
±1 and 0. Thus we may assume that (u, v) itself has this property. Since u and v have the
same modulus, it follows that the ±1-sequence of u − v has as many + signs as − signs.
If the ±-sequence does not have the pattern + − + − · · · + −, then obviously we can
obtain such a sequence by a finite number of symmetric exchanges. Thus 5.1 shows that B
is sortable. The other statements of (i) follow from 5.2.

(ii) We have seen in the proof of (i) that by a finite number of symmetric exchanges we
can sort any pair (u, v) ∈ B. It follows that the sorting relation xu xv − xu′ xv′ is a linear
combination of the corresponding symmetric exchange relations. Since by (i), the sorting
relations generate IB , the assertion follows. �

6. The Ehrhart ring and the base ring of a discrete polymatroid

Let K be a field, and let P be a discrete polymatroid of rank d on the ground set [n] with
set of bases B. Since P is the set of integer vectors of an integral polymatroid P (see
Theorem 3.4), we may study the Ehrhart ring of P . To this end one considers the cone
C ⊂ Rn+1 with C = R+{(p, 1): p ∈ P} Then Q = C ∩ Zn+1 is subsemigroup of Zn+1,
and the Ehrhart ring of P is defined to be the toric ring K [P] ⊂ K [t1, . . . , tn, s] generated
over K by the monomials tusi , (u, i) ∈ Q. By Gordan’s lemma (cf. [1, Proposition 6.1.2]),
K [P] is normal.

Notice that K [P] is naturally graded if we assign to tusi the degree i . We denote by
K [P] the K -subalgebra of K [P] which is generated over K by the elements of degree 1 in
K [P]. Since P = P ∩ Zn it follows that K [P] = K [tus: u ∈ P]. Observe that K [B] may
be identified with the subalgebra K [tus: u ∈ B] of K [P]. After this identification K [B] is
an algebra retract of K [P] with retraction map π : K [P] → K [B], where π is the residue
class map modulo the prime ideal ℘ generated by the elements tus, u ∈ P, |u| < d.

As an immediate consequence of 1.4 we obtain the following important.

Theorem 6.1 K [P] = K [P]. In particular, K [P] is normal.

Corollary 6.2 K [B] is normal.
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Proof: By [1, Theorem 6.1.4], K [P] is normal if and only if the semigroup S generated
by P̂ = {(u, 1): u ∈ P} is normal. This means that if G is the smallest subgroup of Zn+1

containing S and if ma ∈ S for some m ∈ N and a ∈ G, then a ∈ S. We apply the same
criterion to show that K [B] is normal. Let H be the subgroup of Zn+1 consisting of all (u, i)
with |u| = id , and let T be the semigroup generated by B̂ = {(u, 1) : u ∈ B}. Then H ∩ G
is the smallest group containing the semigroup T . Hence if ma ∈ T for some m ∈ N and
a ∈ H ∩ G, then a ∈ S ∩ H = T , as desired. �

Our next aim is to compare algebraic properties of K [P] with those of K [B]. We say
that a K -algebra A has a quadratic Gröbner basis if the defining ideal of A has this property
for some term order.

Theorem 6.3 (a) Suppose K [P] has quadratic relations, or a quadratic Gröbner basis
or is Koszul, then K [B] has these properties, too.

(b) Given a property E . Suppose that K [B(P)] satisfies E for all discrete polymatroids
P. Then also K [P] satisfies E for all discrete polymatroids P.

In particular it follows from the theorem that the properties that the Ehrhart ring of all
discrete polytopes is Koszul, if and only if this is the case for all base rings of all discrete
polytopes. Not all properties behave this way. For example, there exist discrete polytopes
(see 7.1) for which K [P] is Gorenstein but K [B] is not, and vice versa.

Proof: [Proof of 6.3] (a) We noticed already that K [B] may be viewed as an algebra
retract of K [P]. Hence the statements concerning quadratic relations and Koszulness follow
from [14, Proposition 1.4, Corollary 2.5].

Now let A ⊂ B be an arbitrary retract of standard graded toric K -algebras. Then we may
assume that A = K [x1, . . . , xn]/I , and B = K [x1, . . . , xn, y1, . . . , ym]/J with toric ideals
I and J contained in the square of the corresponding graded maximal ideas, and that the
retraction map B → A is induced by π (y j ) = 0 for j = 1, . . . , m.

We use the following well-known fact: suppose J has a Gröbner basis G with respect to
the term order <, and suppose that for all f ∈ G with in<( f ) ∈ K [x1, . . . , xn] one has that
f ∈ k[x1, . . . , xn]. Then G ′ = G ∩ K [x1, . . . , xn] is a Gröbner basis of I (with respect to
the restricted term order).

Since B is toric, we may assume that the elements of G are binomials. Suppose now
that f ∈ G with f = m1 − m2 and in( f ) = m1 ∈ K [x1, . . . , xn], and suppose that
m2 /∈ K [x1, . . . , xn]. Then m1 = π ( f ) ∈ I , a contradiction since I is a prime ideal.

(b) We notice that K [P] is isomorphic to the toric ring K [tusd−|u|: u ∈ P] which, as we
know from 2.7, is the base ring of a polymatroid. Thus the conclusion follows. �

Remark 6.4 A monomial ideal generated by monomials corresponding to the base of a
discrete polymatroid is called a polymatroidal ideal. It has been shown in [8] that polyma-
troidal ideals have linear quotients, so that, in particular, they have a linear resolution. As
another immediate application of 1.4 one has that the product of polymatroidal ideals is
again polymatroidal. This fact has been shown directly in [2].
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7. Gorenstein polymatroids

Let P ⊂ Zn
+ be a discrete polymatroid and B = B(P) the set of bases of P . We know that

both the Ehrhart ring K [P] and the base ring K [B] are normal; thus Cohen–Macaulay. It
is then natural to ask when these rings are Gorenstein. We begin with

Example 7.1 (a) Let P ⊂ Z3
+ be the discrete polymatroid consisting of all integer vectors

u ∈ Z3
+ with |u| ≤ 3. Then the base ring K [B] is the Veronese subring K [x, y, z](3), the

subring of K [x, y, z] generated by all monomials of degree 3. Thus K [B] is Gorenstein. On
the other hand, since the Hilbert series of the Ehrhart ring K [P] is (1+16λ+10λ2)/(1−λ)4,
it follows that K [P] is not Gorenstein.

(b) Let P ⊂ Z3
+ be the discrete polymatroid consisting of all integer vectors u ∈ Z3

+ with
|u| ≤ 4. Then K [B] = K [x, y, z](4) is not Gorenstein. On the other hand, the Hilbert series of
the Ehrhart ring K [P] is (1 + 31λ + 31λ2 + λ3)/(1 − λ)4; thus K [P] is
Gorenstein.

(c) Let P ⊂ Z2
+ be the discrete polymatroid with B = {(1, 2), (2, 1)} its set of bases.

Then both K [P] and K [B] are Gorenstein.

Let, in general, P ⊂ Rn be an integral convex polytope of dimension n and K [P] the
Ehrhart ring of P . A combinatorial criterion [4, Corollary (1. 2)] for K [P] to be Gorenstein
is stated below. Let δ > 0 denote the smallest integer for which δ(P\∂P) ∩ Zn �= ∅. Here
δP = {δα: α ∈ P}, ∂P is the boundary of P and P\∂P is the interior of P . Then K [P] can-
not be Gorenstein unless δ(P\∂P) possesses a unique integer vector. In case that δ(P\∂P)
possesses a unique integer vector, say α0 ∈ Zn , let Q = δP − α0 = {α − α0: α ∈ δP}.
Thus Q ⊂ Rn is an integral convex polytope of dimension n and the origin of Rn is a
unique integer vector belonging to the interior Q\∂Q of Q. Now, [4, Corollary (1.2)] says
that the Ehrhart ring K [P] is Gorenstein if and only if the following condition is satis-
fied: If the hyperplane H ⊂ Rn determined by a linear equation

∑n
i=1 a1xi = b, where

each ai and b are integers and where the greatest common divisor of a1, . . . , an, b is equal
to 1, is a supporting hyperplane of Q such that H ∩ Q is a facet of Q, then b is either
1 or −1.

First of all, we discuss the problem for which discrete polymatroids P ⊂ Zn
+ the Ehrhart

ring K [P] is Gorenstein. In what follows, we will assume that the canonical basis vectors
ε1, . . . , εn of Rn belong to P . In order to apply the above criterion to the Ehrhart ring K [P],
it is required to know linear equations of supporting hyperplanes which define facets of
the integral polymatroid conv(P) ⊂ Rn

+. Note that, since each εi ∈ P , the dimension of
conv(P) is equal to n. Let ρ denote the ground set rank function of conv(P). We say that
∅ �= A ⊂ [n] is ρ-closed if any subset B ⊂ [n] properly containing A satisfies ρ(A) < ρ(B),
and that ∅ �= A ⊂ [n] is ρ-separable if there exist two nonempty subsets A1 and A2 of A
with A1 ∩ A2 = ∅ and A1 ∪ A2 = A such that ρ(A) = ρ(A1) + ρ(A2). For ∅ �= A ⊂ [n]
define the hyperplane HA ⊂ Rn by

HA =
{

(x1, . . . , xn) ∈ Rn:
∑
i∈A

xi = ρ(A)

}
.
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In addition, for each i ∈ [n] define the hyperplane H(i) ⊂ Rn by

H(i) = {(x1, . . . , xn) ∈ Rn: xi = 0}.

Edmonds [5] says

Proposition 7.2 The facets of conv(P) ⊂ Rn
+ are all H(i) ∩ conv(P), where i ranges over

all integers belonging to [n], and all HA ∩ conv(P), where A ranges over all ρ-closed and
ρ-inseparable subsets of [n].

We are now in the position to state a characterization for the Ehrhart ring K [P] of a
discrete polymatroid P ⊂ Zn

+ to be Gorenstein. For A ⊂ [n] write |A| for the cardinality
of A.

Theorem 7.3 Let P ⊂ Zn
+ be a discrete polymatroid and suppose that the canonical

basis vectors ε1, . . . , εn of Rn belong to P. Let ρ denote the ground set rank function of the
integral polymatroid P = conv(P) ⊂ Rn. Then the Ehrhart ring K [P] of P is Gorenstein
if and only if there exists an integer δ ≥ 1 such that

ρ(A) = 1

δ
(|A| + 1)

for all ρ-closed and ρ-inseparable subsets A of [n].

Proof: Let δ ≥ 1 denote the smallest integer for which δ(P\∂P) ∩ Zn �= ∅. Since
ε1, . . . , εn belong to P , it follows that δ(P\∂P) ∩ Zn �= ∅ if and only if (1, . . . , 1) ∈
δ(P\∂P). By virtue of Proposition 7.2 the equations of the supporting hyperplanes which
define the facets of δP − (1, . . . , 1) are all xi = −1, 1 ≤ i ≤ n, and all

∑
i∈A xi =

δρ(A) − |A|, where A ranges over all ρ-closed and ρ-inseparable subsets of [n]. Since
(1, . . . , 1) ∈ δP , one has |A| ≤ δρ(A). Thus if K [P] is Gorenstein, then δρ(A) − |A| = 1
for all ρ-closed and ρ-inseparable subsets of [n]. Conversely, if there is an integer δ ≥ 1
such that δρ(A) −|A| = 1 for all ρ-closed and ρ-inseparable subsets of [n], then (1, . . . , 1)
is a unique integer vector belonging to δ(P\∂P) and K [P] is Gorenstein. �

Example 7.4 (a) Let P (d)
n ⊂ Zn

+ be the discrete polymatroid consisting of all integer
vectors u ∈ Zn

+ with |u| ≤ d and B(d)
n the set of bases of P (d)

n . Letρ denote the ground set rank
function of the integral polymatroid conv(P) ⊂ Rn

+. Then ρ(A) = d for all ∅ �= A ⊂ [n].
Thus [n] is the only ρ-closed and ρ-inseparable subset of [n]. Hence the Ehrhart ring K [P (d)

n ]
is Gorenstein if and only if d divides n + 1. On the other hand, the base ring K [B(d)

n ] is the
Veronese subring K [t1, . . . , tn](d). Thus K [B(d)

n ] is Gorenstein if and only if d divides n.
(Note, in fact, that K [P (d)

n ] is just the Veronese subring K [x1, . . . , xn, s](d).)
(b) Fix δ ≥ 1 which divides n + 1. Let ρ: 2[n] → R+ denote the nondecreasing function

defined by

ρ(A) = �(max(A) + 1)/δ 
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for all ∅ �= A ⊂ [n] together with ρ(∅) = 0, where max(A) is the biggest integer belonging
to A and where �x is the smallest integer ≥ x . Then ρ is submodular. (In fact, if A, B ⊂ [n]
are nonempty with max(B) ≤ max(A), then max(A ∪ B) = max(A) and max(A ∩ B) ≤
max(B). Thus ρ(A ∪ B) = ρ(A) and ρ(A ∩ B) ≤ ρ(B).) If ∅ �= A ⊂ [n] is ρ-closed, then
A = [r ] for some 1 ≤ r ≤ n such that δ divides r + 1. Moreover, if δ divides r + 1, then
A = [r ] satisfies ρ(A) = (|A| + 1)/δ. Let d = (n + 1)/δ. Let P ⊂ Zn

+ be the discrete
polymatroid of rank d arising from ρ, i.e., P consists of all integer vectors u ∈ Zn

+ such
that u(A) ≤ ρ(A) for all ∅ �= A ⊂ [n]. More precisely, u = (u1, . . . , un) ∈ Zn

+ belongs to
P if and only if

u1 + u2 + · · · + uiδ−1 ≤ i, i = 1, 2, . . . , d.

It follows from Theorem 7.3 that the Ehrhart ring K [P] is Gorenstein.
We also discuss the base ring of this discrete polymatroid. Let δ ≥ 2. Then u ∈ Zn

+ is a
base of P if and only if u is of the form

u = εi1 + εi2 + · · · + εid ,

where 1 ≤ i1 ≤ δ − 1 and where δ( j − 1) ≤ i j ≤ δ j − 1 for j = 2, . . . , d. Thus the base
ring K [B] of P is the Segre product

K [t1, . . . , tδ−1]�K [tδ, . . . , t2δ−1]� · · · �K
[
t(d−1)δ, . . . , tdδ−1

]
of the polynomial ring in δ − 1 variables and d − 1 copies of the polynomial ring in δ

variables. Thus K [B] is not Gorenstein unless δ = n + 1. If δ = 1, then (2, 1, . . . , 1) is a
unique base of P and the base ring K [B] = K [t2

1 t2 . . . tn] is Gorenstein.
(c) Let ρ: 2[n] → R+ denote the nondecreasing function defined by ρ(A) = |A| + 1 for

all ∅ �= A ⊂ [n] together with ρ(∅) = 0. Then ρ is submodular and all nonempty subsets
of [n] are ρ-closed and ρ-inseparable. Let P ⊂ Zn

+ be the discrete polymatroid of rank
n + 1 arising from ρ. Then the Ehrhart ring K [P] is Gorenstein. Moreover, since the set of
bases of P is B = {(2, 1, . . . , 1), . . . , (1, . . . , 1, 2)}, the base ring K [B] isomorphic to the
polynomial ring in n variables; thus K [B] is Gorenstein.

We now turn to the problem when the base ring of a discrete polymatroid is Gorenstein.
To obtain a perfect answer to this problem seems, however, quite difficult. For example,
the discussions appearing in [4] for classifying Gorenstein rings belonging to the class of
algebras of Veronese type, a distinguished class of discrete polymatroids (Example 2.6 (c)),
is enough complicated. In what follows we introduce the concept of “generic” discrete
polymatroids and find a characterization for the base ring of a generic discrete polymatroid
to be Gorenstein.

Let P ⊂ Zn
+ be a discrete polymatroid of rank d and B = B(P) the set of bases of

P . We will, as before, assume that the canonical basis vectors ε1, . . . , εn of Rn belong
to P . Let F = conv(B), the set of bases of the integral polymatroid P = conv(P) ⊂ Rn

+.
Recall that F is a face of P with the supporting hyperplane H[n] ⊂ Rn , i.e., F =H[n] ∩ P .
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Let ρ: 2[n] → R+ denote the ground set rank function of P . Then

F = {
u ∈ H[n] ∩ Zn

+: u(A) ≤ ρ(A), ∅ �= A ⊂ [n], A �= [n]
}
.

Let ϕ :H[n] → Rn−1 denote the affine transformation defined by

ϕ(u1, . . . , un) = (u1, . . . , un−1).

Thus ϕ is injective and ϕ(H[n] ∩Zn) = Zn−1. Since for all A ⊂ [n] with n ∈ A and A �= [n]
the hyperplane ϕ(HA ∩ H[n]) ⊂ Rn−1 is determined by the linear equation

∑
i∈[n]\A xi =

d − ρ(A), it follows that

ϕ(F) = {u ∈ Rn−1
+ : d − ρ([n]\A) ≤ u(A) ≤ ρ(A), ∅ �= A ⊂ [n − 1]}.

We say that P is generic if

(G1) each base u of P satisfies u(i) > 0 for all 1 ≤ i ≤ n;
(G2) F = conv(B) is a facet of P = conv(P);
(G3) F ∩ HA is a facet of F for all ∅ �= A ⊂ [n] with A �= [n].

It follows that P is generic if and only if (i) ρ is strictly increasing, (ii) dim ϕ(F) = n − 1,
and (iii) the facets of ϕ(F) are all {u ∈ ϕ(F): u(A) = ρ(A)} and all {u ∈ ϕ(F): u(A) =
d − ρ([n]\A)}, where A ranges over all nonempty subsets of [n − 1].

Example 7.5 (a) Let n = 2 and let a1, a2 > 0 be integers. Let P ⊂ Z2
+ denote the discrete

polymatroid of rank d consisting of those u = (u1, u2) ∈ Z2
+ such that u1 ≤ a1, u2 ≤ a2

and u1 + u2 ≤ d . Then P is generic if and only if a1 < d, a2 < d, and d < a1 + a2. If P is
generic, then the bases of P are (a1, d −a1), (a1 −1, d −a1 +1), . . . , (d −a2, a2). Thus the
base ring K [B] of P is Gorenstein if and only if either a1 + a2 = d + 1 or a1 + a2 = d + 2.

(b) Let n = 3. Let P ⊂ Z3
+ be a discrete polymatroid of rank d with B its set of

bases, and ρ the ground set rank function of the integral polymatroid conv(P) ⊂ R3
+. Then

ϕ(F) ⊂ Z2
+, where F = conv(B), consists of those u = (u1, u2) ∈ R2

+ such that

d − ρ({2, 3}) ≤ u1 ≤ ρ({1}),
d − ρ({1, 3}) ≤ u2 ≤ ρ({2}),

d − ρ({3}) ≤ u1 + u2 ≤ ρ({1, 2}).

Hence P is generic if and only if

0 < ρ({i}) < ρ({i, j}) < d, 1 ≤ i �= j ≤ 3,

ρ({i}) + ρ({ j}) > ρ({i, j}), 1 ≤ i < j ≤ 3,

ρ({i, j}) + ρ({ j, k}) > d + ρ({ j}), {i, j, k} = [3].
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Moreover, if P is generic, then the base ring K [B] is Gorenstein if and only if

ρ({i}) + ρ({ j, k}) = d + 2, {i, j, k} = [3].

Theorem 7.6 (a) Let n ≥ 3. Let P ⊂ Zn
+ be a discrete polymatroid of rank d and suppose

that the canonical basis vectors ε1, . . . , εn of Rn belong to P. Let ρ: 2[n] → R+ denote the
ground set rank function of the integral polymatroid conv(P) ⊂ Rn

+. If P is generic and if
the base ring K [B] of P is Gorenstein, then there is a vector α = (α1, . . . , αn−1) ∈ Zn−1

+
with each αi > 1 and with d > |α| + 1 such that

ρ(A) =
{
α(A) + 1, if ∅ �= A ⊂ [n − 1],

d − α([n]\A) + 1, if n ∈ A �= [n].

(b) Conversely, given α = (α1, . . . , αn−1) ∈ Zn−1
+ , where n ≥ 3, with each αi > 1 and

d ∈ Z with d > |α| + 1, define the function ρ: 2[n] → R+ by (a) together with ρ(∅) = 0
and ρ([n]) = d. Then

(i) ρ is strictly increasing and submodular;
(ii) the discrete polymatroid P = {u ∈ Zn

+: u(A) ≤ ρ(A), ∅ �= A ⊂ [n]} ⊂ Zn
+ arising

from ρ is generic;
(iii) the base ring K [B] of P is Gorenstein.

Proof: (a) Suppose that a discrete polymatroid P ⊂ Zn
+ of rank d is generic and that the

base ring K [B] of P is Gorenstein. Let F = conv(B). Since K [B] is Gorenstein, there is
an integer δ ≥ 1 such that

δ(ρ(A) − (d − ρ([n]\A))) = 2

for all ∅ �= A ⊂ [n − 1]. Hence either δ = 1 or δ = 2.
If δ = 2, then (2ρ({1})−1, . . . , 2ρ({n −1})−1) ∈ Zn−1

+ must be a unique integer vector
belonging to the interior of 2ϕ(F). Since K [B] is Gorenstein it follows that

∑
i∈A

(2ρ({i}) − 1) = 2ρ(A) − 1, ∅ �= A ⊂ [n − 1].

Thus

ρ(A) =
∑
i∈A

ρ({i}) − 1

2
(|A| − 1), ∅ �= A ⊂ [n − 1].

Since n ≥ 3, it follows that ρ({1, 2}) /∈ Z, a contradiction.
Now let δ = 1 and set

αi = ρ({i}) − 1 = d − ρ([n]\{i}) + 1 > 1, 1 ≤ i ≤ n − 1.
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Then α = (α1, . . . , αn−1) ∈ Zn−1
+ is a unique integer vector belonging to the interior of

ϕ(F) ⊂ Rn−1
+ and ϕ(F) − α consists of those u = (u1, . . . , un−1) ∈ Rn−1 such that

d − ρ([n]\A) − α(A) ≤
∑
i∈A

ui ≤ ρ(A) − α(A), ∅ �= A ⊂ [n − 1].

Since P is generic, the desired equality on ρ follows immediately. Moreover, since ρ([n −
1]) = |α| + 1 < ρ([n]) = d , one has d > |α| + 1, as required.

(b) Since each αi > 1 and since d > |α| + 1, it follows that 0 < ρ(A) < ρ([n]) = d for
all ∅ �= A ⊂ [n] with A �= [n]. Moreover, ρ({i}) > 2 for all 1 ≤ i ≤ n. If ∅ �= A ⊂ B ⊂ [n]
with n /∈ A and n ∈ B, then ρ(B) − ρ(A) = d − (α([n]\B) + α(A)) > d − |α| > 1. Hence
ρ is strictly increasing.

To see why ρ is submodular, we distinguish three cases as follows. First, if A, B ⊂ [n−1]
with A �= ∅ and B �= ∅, then

ρ(A) + ρ(B) = α(A) + α(B) + 2

= α(A ∪ B) + α(A ∩ B) + 2

= ρ(A ∪ B) + ρ(A ∩ B)

unless A ∩ B �= ∅. Second, if A, B ⊂ [n] with n ∈ A �= [n] and n ∈ B �= [n], then

ρ(A) + ρ(B) = 2d − (α([n]\A) + α([n]\B)) + 2

= 2d − (α([n]\(A ∩ B)) + α([n]\(A ∪ B))) + 2

= ρ(A ∪ B) + ρ(A ∩ B)

unless A∪B �= [n]. Third, if n ∈ A and B ⊂ [n−1], then assuming A ∩ B �= ∅ and A∪B �= [n]
one has

ρ(A) + ρ(B) = d − α([n]\A) + 1 + α(B) + 1

= d − α(([n]\A)\B) + 1 + α(B\([n]\A)) + 1

= d − α([n]\(A ∪ B)) + 1 + α(A ∩ B) + 1

= ρ(A ∪ B) + ρ(A ∩ B),

as desired.
Let F = conv(B). Since

ϕ(F) = {u ∈ Rn−1
+ : α(A) − 1 ≤ u(A) ≤ α(A) + 1, ∅ �= A ⊂ [n − 1]},

it follows that ϕ(F) − α ⊂ Rn−1 consists of those u = (u1, . . . , un−1) ∈ Rn−1 such that

−1 ≤ ui1 + · · · + uik ≤ 1, 1 ≤ i1 < · · · < ik ≤ n − 1.

Hence (ϕ(F) − α) ∩ Zn−1 consists of those v = (v1, . . . , vn−1) ∈ Zn−1 such that −1 ≤
vi ≤ 1 for all 1 ≤ i ≤ n − 1, |{i : vi = 1}| ≤ 1, and |{i : vi = −1}| ≤ 1. In particular
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the canonical basis vectors ε1, . . . , εn−1 of Rn−1 belong to ϕ(F ) − α. Thus F is a facet of
P = conv(P). For 1 ≤ i1 < · · · < ik ≤ n − 1 write Hi1...ik ⊂ Rn−1 (resp. H′

i1...ik
⊂ Rn−1)

for the supporting hyperplane of F determined by the linear equation xi1 + · · · + xik = 1
(resp. xi1 +· · ·+ xik = −1). Then the vectors εi1 , . . . , εik (resp. −εi1 , . . . ,−εik ) and εi1 −ε j

(resp. −εi1 + ε j ), j ∈ [n − 1]\{i1, . . . , ik}, belong to the face (ϕ(F ) − α) ∩ Hi1...ik (resp.
(ϕ(F ) − α) ∩H′

i1...ik
) of ϕ(F ) − α. Thus (ϕ(F ) − α) ∩Hi1...ik (resp. (ϕ(F ) − α) ∩H′

i1...ik
)

is a facet of ϕ(F ) − α. Hence P is generic. Moreover, since the Ehrhart ring K [ϕ(F ) − α]
is Gorenstein, the base ring K [B] (∼=K [ϕ(F ) − α]) is Gorenstein, as desired. �

8. Base polytopes of discrete polymatroids

Let P ⊂ Zn
+ be a discrete polymatroid and B = B(P) the set of bases of P . The convex

hull conv(B) ⊂ Rn
+ of B is said to be the base polytope of P . Since conv(P) ∩ Zn = P ,

one has conv(B) ∩ Zn = B. In other words, the base polytope of P is just the set of bases
of the integral polymatroid P = conv(P) ⊂ Rn

+.
Write V (d)

n ⊂ Rn
+ for the set of all vectors u = (u1, . . . , un) ∈ Rn

+ with |u| = ∑n
i=1 ui =

d. It is natural to ask which integral convex polytope Q ⊂ V (d)
n can be the base polytope of

a discrete polymatroid P ⊂ Zn
+ of rank d.

If Q ⊂ V (d)
n is an integral convex polytope and if a, b ∈ Zn

+, then we write Qa,b for the
integral convex polytope which is the convex hull of the finite set

{w ∈ Q ∩ Zn : a ∧ b ≤ w ≤ a ∨ b}

of integer vectors.

Lemma 8.1 If Q ⊂ V (d)
n is the base polytope of a discrete polymatroid, then Qa,b is again

the base polytope of a discrete polymatroid.

Proof: If Q ⊂ V (d)
n is the base polytope of a discrete polymatroid, then Q ∩ Zn is the set

of bases of P . Since the finite set {w ∈ Q ∩ Zn : a ∧ b ≤ w ≤ a ∨ b} of integer vectors
satisfies the exchange property 2.3 (c) for discrete polymatroids, it follows that Qa,b is the
base polytope of a discrete polymatroid. �

We now come to a generalization of [7, Theorem 4.1] to discrete polymatroids. Let, as
before, ε1, . . . , εn denote the canonical basis vectors of Rn .

Theorem 8.2 An integral convex polytope Q ⊂ V (d)
n is the base polytope of a discrete

polymatroid P ⊂ Zn
+ of rank d if and only if, for any vectors a and b belonging to Zn

+, the
integral convex polytope Qa,b possesses the property that if u and v are vertices of Qa,b and
if the segment conv{u, v} is an edges of Qa,b, then v − u is of the form 
(εi − ε j ), where
i �= j and 0 �= 
 ∈ Z+.

Proof: (“only if”) Because of Lemma 8.1, it suffices to show that the base polytope Q of
a discrete polymatroid possesses the required property.
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Let u = (u1, . . . , un) and v = (v1, . . . , vn) be vertices of Q such that the segment
conv({u, v}) is an edge of Q, and suppose that ui > vi for 1 ≤ i ≤ r, u j < v j for r < j ≤ s,
and uk = vk for s < k ≤ n. We claim that r = 1 and s = 2. Let, say, r > 1. Since u1 > v1,
Theorem 4.1 guarantees that there is r < j ≤ s such that u′ = u −ε1 +ε j and v′ = v−ε j +ε1

belong to Q. Since r > 1, neither u′ = (u1 − 1, u2, . . .) nor v′ = (v1 + 1, v2, . . .) can lie
on the edge conv({u, v}) of Q. Thus (u + v)/2 = (u′ + v′)/2 yields a contradiction. Hence
r = 1. Similarly, s = 2.

Let r = 1 and s = 2, and let u = (u1, u2, w3, . . . , wn) and v = (v1, v2, w3, . . . , wn)
with u1 > v1 and u2 < v2. Since u1 − v1 = v2 − u2, it follows that v − u = (u1 − v1)
(−1, 1, 0, . . . , 0), as desired.

(“If”) Let u = (u1, . . . , un) and v = (v1, . . . , vn) be integer vectors belonging to Q, and
suppose that ui > vi for 1 ≤ i ≤ r, u j < v j for r < j ≤ s, and uk = vk for s < k ≤ n.
Then u is a vertex ofQu,v . In fact, ifH is the hyperplane of Rn defined by the linear equation∑r

i=1 xi = ∑r
i=1 ui , then H is a supporting hyperplane of Qu,v with H ∩ Qu,v = {u}.

If w is a vertex of Qu,v such that the segment conv{u, w} is an edge of Qu,v and if
w − u = 
(ε j − εi ) with i �= j and with 0 �= 
 ∈ Z+, then we write Ew for the vector
(w−u)/
 = ε j −εi . Since u + Ew belongs to Qu,v , it follows that 1 ≤ i ≤ r and r < j ≤ s.

Let � denote the set of vertices w of Qu,v such that the segment conv{u, w} is an edge
of Qu,v , and write

v − u =
∑
w∈�

cw Ew

with each 0 ≤ cw ∈ Q. What we must prove is that, for each 1 ≤ i0 ≤ r , there is r < j0 ≤ s
such that u − εi0 + ε j0 belongs to Qu,v .

Now, for each 1 ≤ i0 ≤ r , there is w0 ∈ � with cw0 > 0 such that Ew0 = ε j0 − εi0 . Since
r < j0 ≤ s and since u + Ew0 = u − εi0 + ε j0 ∈ Qu,v , the vector u + Ew0 is what we want
to find. �

We conclude the present section with one of the fundamental properties of the base ring
of a discrete polymatroid. We say that a convex polytope P ⊂ Rn of dimension e is simple
if each vertex of P belongs to just e edges of P .

Corollary 8.3 Let P ⊂ Zn
+ be a discrete polymatroid with B = B(P) the set of its bases.

Suppose that the base polytope conv(B) ⊂ Rn
+ is simple. Then the base ring K [B] is a

K -algebra with isolated singularity.

Proof: Let dim conv(B) = e. Fix a vertex v of conv(B) and let u1, . . . , ue denote
the vertices of conv(B) such that the segment conv{v, ui }, 1 ≤ i ≤ e, is an edge of
conv(B). Write Yu for the d × n Z-matrix whose rows are u1 − v, . . . , ue − v. It fol-
lows from Theorem 8.2 that each row of Yu is of the form εi − ε j with i �= j . thus Yu

is totally unimodular, i.e., each subdeterminant of Yu belongs to {0, ±1}. Hence, for all
w ∈ B, the vector w − v can be expressed uniquely as w − v = ∑e

i=1 qi (ui − v) with each
0 ≤ qi ∈ Z.
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The base ring K [B] ⊂ K [t1, . . . , tn] is generated by those monomials tw = tw1
1 . . . twn

n
with w = (w1, . . . , wn) ∈ B. Thus if v is a vertex of conv(B), then the localization

K [B]tv = K

[
tv,

1

tv

][{
tw

tv

}
w∈B

]
= K

[
tv,

1

tv

]
[{tw−v}w∈B]

coincides with the polynomial ring K [tv, 1
tv ][tw1−v, . . . , twe−v] over the regular ring

K [tu, 1
tu ]. Hence the localization K [B]tv is regular. Since K [B] is a K -algebra with isolated

singularity if and only if the localization K [B]tv is regular for all vertices v of conv(B), it
follows that K [B] is a K -algebra with isolated singularity. �

9. Constructions of discrete polymatroids

In this section two simple techniques to construct discrete polymatroids will be studied.
The first one shows that a nondecreasing and submodular function defined in a sublattice
of 2[n] produces a discrete polymatroid. The second one yields the concept of transversal
polymatroids.

A sublattice of 2[n] is a collection L of subsets of [n] with ∅ ∈ L and [n] ∈ L such that
for all A and B belonging to L both A ∩ B and A ∪ B belong to L. A function µ:L → R+
is called submodular if

µ(A) + µ(B) ≥ µ(A ∪ B) + µ(A ∩ B), A, B ∈ L.

Even though Theorem 9.1 below is a direct consequence of [17, Theorem 1, p. 342] together
with Theorem 3.4, for the sake of completeness we will give an easy proof based on [17,
Theorem 2, p. 345].

Theorem 9.1 Let L be a sublattice of 2[n] and µ:L → R+ an integer valued non-
decreasing and submodular function with µ(∅) = 0. Then

P(L,µ) = {u ∈ Zn
+: u(A) ≤ µ(A), A ∈ L}.

is a discrete polymatroid.

Proof: Let ρ: 2[n] → R+ be the nondecreasing function defined by

ρ(X ) = min{µ(A): A ⊃ X, A ∈ L}

together with ρ(∅) = 0. Then ρ is submodular. Let Pρ ⊂ Zn
+ denote the discrete polyma-

troid arising from ρ. Since ∅ �= X ⊂ [n] with X /∈L cannot be ρ-closed, it follows from
Proposition 7.2 that

Pρ = {u ∈ Zn
+: u(A) ≤ ρ(A), A ∈ L}.



266 HERZOG AND HIBI

Since ρ(A) = µ(A) for all A ∈ L, one has Pρ = P(L,µ), thus P(L,µ) is a discrete polymatroid,
as desired. �

Example 9.2 Let L be a chain of length n of 2[n], say

L = {∅, {n}, {n − 1, n}, . . . , {1, . . . , n}} ⊂ 2[n].

Given nonnegative integers a1, . . . , an , define µ:L → R+ by

µ({i, i + 1, . . . , n}) = ai + ai+1 + · · · + an, 1 ≤ i ≤ n

together with µ(∅) = 0. Then the discrete polymatroid P(L,µ) ⊂ Zn
+ is

P(L,µ) =
{

u = (u1, . . . , un) ∈ Zn
+:

n∑
j=i

u j ≤
n∑

j=i

a j , 1 ≤ i ≤ n

}
.

This example will be discussed again in Example 9.4.

Let A = (A1, . . . , Ad ) be a family of nonempty subsets of [n]. It is not required that
Ai �= A j if i �= j . Let

BA = {
εi1 + · · · + εid : ik ∈ Ak, 1 ≤ k ≤ d

} ⊂ Zn
+

and define the integer valued nondecreasing function ρA: 2[n] → R+ by setting

ρA(X ) = |{k: Ak ∩ X �= ∅}|, X ⊂ [n].

Again, the following Theorem 9.3 is well known. However, we give its proof for the sake
of completeness.

Theorem 9.3 The function ρA is submodular and BA is the set of bases of the discrete
polymatroid PA ⊂ Zn

+ arising from ρA.

Proof: For each 1 ≤ k ≤ d define the function ρk : 2[n] → R+ by ρk(X ) = 1 if Ak ∩ X �= ∅
and ρk(X ) = 0 if Ak ∩ X = ∅. Then ρk is nondecreasing and submodular. Write Pk ⊂ Zn

+
for the discrete polymatroid arising from ρk . Then Proposition 1.4 guarantees that

P =
{

x ∈ Zn
+: x =

d∑
k=1

xk, xk ∈ Pk

}

is a discrete polymatroid of rank d and the ground set rank function of the integral polyma-
troid conv(P) ⊂ Rn

+ is ρ = ∑d
k=1 ρk . It is clear that

ρ(X ) = |{k: Ak ∩ X �= ∅}|, X ⊂ [n]

and the set of bases of P coincides with BA, as desired. �
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We say that the discrete polymatroid PA ⊂ Zn
+ is the transversal polymatroid presented

by A.

Example 9.4 Let r1, . . . , rd ∈ [n] and set Ak = [rk] = {1, . . . , rk}, 1 ≤ k ≤ d.
Let min(X ) denote the smallest integer belonging to X , where ∅ �= X ⊂ [n]. If A =
(A1, . . . , Ad ), then

ρA(X ) = ρA({min(X )}) = |{k: min(X ) ≤ rk}|.

If ∅ �= X ⊂ [n] is ρA-closed, then X = {min(X ), min(X ) + 1, . . . , n}. Let

ai = |{k: rk = i}|, 1 ≤ i ≤ n.

Thus

ρA({i, i + 1, . . . , n}) = ai + ai+1 + · · · + an, 1 ≤ i ≤ n.

The transversal polymatroid PA ⊂ Zn
+ presented by A is

PA =
{

u = (u1, . . . , un) ∈ Zn
+:

n∑
j=i

u j ≤
n∑

j=i

a j , 1 ≤ i ≤ n

}
.

Thus PA coincides with the discrete polymatroid P(L,µ) in Example 9.2. If Pi ⊂ Zn
+ is the

discrete polymatroid with Bi = {ε1, . . . , εi } its set of bases, then PA = a1 P1 ∨ · · · ∨
an Pn . Moreover, BA is equal to the strongly stable principal set with (a1, . . . , an) its Borel
generator.

Example 9.5 Let P ⊂ Z4
+ denote the discrete polymatroid of rank 3 consisting of those

u = (u1, u2, u3, u4) ∈ Z4
+ with ui ≤ 2 for 1 ≤ i ≤ 4 and with |u| ≤ 3. Then P is

not transversal. Suppose, on the contrary, that P is a transversal polymatroid presented by
A = (A1, A2, A3) with each Ak ⊂ [4]. Since (2, 1, 0, 0), (2, 0, 1, 0), (2, 0, 0, 1) ∈ P and
(3, 0, 0, 0) /∈ P , we assume that 1 ∈ A1, 1 ∈ A2 and A3 = {2, 3, 4}. Since (1, 2, 0, 0), (0, 2,
1, 0), (0, 2, 0, 1) ∈ P and (0, 3, 0, 0) /∈ P , we assume that 2 ∈ A1 and A2 = {1, 3, 4}. Since
(0, 0, 2, 1) ∈ P and (0, 0, 3, 0) /∈ P , one has 4 ∈ A1. Hence (0, 0, 0, 3) ∈ P , a contradiction.

The discussions in Example 9.4 enables us to classify all Gorenstein strongly stable
principal sets.

Proposition 9.6 Let a = (a1, . . . , an) ∈ Zn
+ with an ≥ 1 and write Ba for the strongly

stable principal set with (a1, . . . , an) its Borel generator. Then the base ring K [Ba] is
Gorenstein if and only if a2 + · · · + an divides n and

n − i + 2

ai + ai+1 + · · · + an
= n

a2 + · · · + an

for all 3 ≤ i ≤ n with ai−1 �= 0.
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Proof: The base ring K [Ba] is isomorphic to the Ehrhart ring of the integral convex
polytope P ∈ Rn−1 consisting of those u = (u2, u3, . . . , un) such that ui ≥ 0, 2 ≤ i ≤ n,
and

∑n
j=i u j ≤ ∑n

j=i a j for i = 2 and for all 3 ≤ i ≤ n with ai−1 �= 0. Since all of these
inequalities define the facets of P , the desired result follows immediately. Note that P is an
integral polymatroid whose ground set rank function ρ is given by ρ(X ) = ∑n

j=min(X ) a j

for ∅ �= X ⊂ {2, . . . , n}. �

Example 9.7 (a) If a = (0, 1, . . . , 1, 2) ∈ Zn
+ then K [Ba] is Gorenstein.

(b) If a = (0, 1, 0, 2, 0, 3), then K [Ba] is Gorenstein.
(c) If a = (0, . . . , 0, an) ∈ Zn

+ with an ≥ 1, then K [Ba] is Gorenstein if and only if an

divides n.

It would, of course, be of interest to classify all transversal polymatroids with Gorenstein
base rings.
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