ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Transitive Permutation Groups of Prime-Squared Degree

Edward Dobson1 and Dave Witte2
1Mississippi State University Department of Mathematics and Statistics Mississippi State MS 39762 USA
2Oklahoma State University Department of Mathematics Stillwater OK 74078 USA

DOI: 10.1023/A:1020882414534

Abstract

We explicitly determine all of the transitive groups of degree p 2, p a prime, whose Sylow p-subgroup is not isomorphic to the wreath product \mathbb Z p \wr \mathbb Z p \mathbb{Z}_p \wr \mathbb{Z}_p . Furthermore, we provide a general description of the transitive groups of degree p 2 whose Sylow p-subgroup is isomorphic to \mathbb Z p \wr \mathbb Z p \mathbb{Z}_p \wr \mathbb{Z}_p , and explicitly determine most of them. As applications, we solve the Cayley Isomorphism problem for Cayley objects of an abelian group of order p 2, explicitly determine the full automorphism group of Cayley graphs of abelian groups of order p 2, and find all nonnormal Cayley graphs of order p 2.

Pages: 43–69

Keywords: permutation group; Cayley graph; $p$-group

Full Text: PDF

References

1. B. Alspach and T.D. Parsons, “Isomorphism of circulant graphs and digraphs,” Discrete Math. 25(2) (1979), 97-108.
2. L. Babai, “Isomorphism problem for a class of point-symmetric structures,” Acta Math. Sci. Acad. Hung. 29 (1977), 329-336.
3. M. Bardoe and P. Sin, “The permutation modules for GL(n + 1, Fq ) acting on Pn(Fq ) and Fn+1 q ,” J. London Math. Soc. 61(1) (2000), 58-80.
4. N. Brand, “Quadratic isomorphism of Z p \times Z p objects,” Congr. Numer. 58 (1987), 157-163.
5. W. Burnside, “On some properties of groups of odd order,” J. London Math. Soc. 33 (1901), 162-185.
6. W. Burnside, Theory of Groups of Finite Order, Cambridge University Press, Cambridge, 1911.
7. M. Burrow, Representation Theory of Finite Groups, Dover, New York, 1993.
8. P.J. Cameron, “Finite permutation groups and finite simple groups,” Bull. London Math. Soc. 13 (1981), 1-22.
9. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, 1956.
10. J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, Berlin, Heidelberg, Graduate Texts in Mathematics, Vol. 163, 1996.
11. E. Dobson, “Isomorphism problem for Cayley graphs of Z3p,” Discrete Math. 147 (1995), 87-94.
12. W. Feit, “Some consequences of the classification of finite simple groups,” in The Santa Cruz Conference on Finite Groups, B. Cooperstein and G. Mason (Eds.), Amer. Math. Soc., Providence,
1980. Proc. Symp. Pure Math. 37 (1980), 175-181.
13. C.D. Godsil, “On Cayley graph isomorphisms,” Ars Combin. 15 (1983), 231-246.
14. D. Gorenstein, Finite Groups, Chelsea, New York, 1980.
15. R.M. Guralnick, “Subgroups of prime power index in a simple group,” J. of Algebra 81 (1983), 304-311.
16. C. Hering, “Transitive linear groups and linear groups which contain irreducible subgroups of prime order II,” J. Algebra 93(1) (1985), 151-164.
17. W.C. Huffman, “The equivalence of two cyclic objects on pq elements,” Discrete Math. 154 (1996), 103-127.
18. W.C. Huffman, “Codes and Groups,” in Handbook of Coding Theory, V.S. Pless and W.C. Huffman (Eds.), Vol. 2, Elsevier, 1998, pp. 1345-1440.
19. W.C. Huffman, V. Job, and V. Pless, “Multipliers and generalized multipliers of cyclic objects and cyclic codes,” J. Combin. Theory Ser. A 62 (1993), 183-215.
20. B. Huppert, “Zweifach transitive, aufl\ddot osbare Permutationsgruppen,” Math. Z. 68 (1957), 126-150.
21. T. Hungerford, Algebra, Holt, Rinehart and Winston, 1974.
22. G.A. Jones, “Abelian subgroups of simply primitive groups of degree p3, where p is prime,” Quart. J. Math. Oxford 30(2) (1979), 53-76.
23. M. Klemm, “ \ddot Uber die Reduktion von Permutationsmoduln,” Math. Z. 143 (1975), 113-117.
24. A.S. Kleshchev and A.A. Premet, “On second degree cohomology of symmetric and alternating groups,” Comm. Alg. 21(2) (1993), 583-600.
25. M.Ch. Klin and R. P\ddot oschel, “The isomorphism problem for circulant graphs with pn vertices,” Preprint P-34/80 ZIMM, Berlin, 1980.
26. W. Knapp and P. Schmid, “Codes with prescribed permutation group,” J Algebra 67 (1980), 415-435.
27. F.J. MacWilliams and M.J.A. Sloane, The Theory of Error Correcting Codes, North-Holland, New York, 1977.
28. D. Maru\?si\?c and R. Scapellato, “Characterizing vertex transitive pq-graphs with imprimitive automorphism group,” J. Graph Theory 16 (1992), 375-387.
29. B. Mortimer, “The modular permutation representations of the known doubly transitive groups,” Proc. London Math. Soc. 41(3) (1980), 1-20.
30. O. Ore, “Contributions to the theory of groups of finite orders,” Duke Math. J. 5 (1954), 431-460.
31. P.P. Pálfy, “Isomorphism problem for relational structures with a cyclic automorphism,” Europ. J. Comb. 8 (1987), 35-43.
32. G. Sabidussi, “The lexicographic product of graphs,” Duke Math. J. 28 (1961), 573-578.
33. H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
34. H. Wielandt, Permutation Groups Through Invariant Relations and Invariant Functions, Lecture Notes, Ohio State University, 1969.
35. M.Y. Xu, “Automorphism groups and isomorphisms of Cayley digraphs,” Discrete Math. 182 (1998), 309-319.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition