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Abstract. We explicitly determine all of the transitive groups of degree p2, p a prime, whose Sylow p-subgroup
is not isomorphic to the wreath product Z p � Z p . Furthermore, we provide a general description of the transitive
groups of degree p2 whose Sylow p-subgroup is isomorphic to Z p � Z p , and explicitly determine most of them.
As applications, we solve the Cayley Isomorphism problem for Cayley objects of an abelian group of order p2,
explicitly determine the full automorphism group of Cayley graphs of abelian groups of order p2, and find all
nonnormal Cayley graphs of order p2.
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1. Introduction

In 1901, Burnside [5] proved the following theorem.

Theorem 1 (Burnside, [5]) Let G be a transitive group of prime degree. Then either G is
doubly transitive or G contains a normal Sylow p-subgroup.

If G is a transitive group of prime degree and has a normal Sylow p-subgroup, then it is not
difficult to show that G is permutation isomorphic to a subgroup of AGL(1, p). Similarly,
it is also straightforward to show that if G is a transitive group of prime degree, then G has
a normal Sylow p-subgroup if and only if G is solvable.

A well-known consequence of the classification of the finite simple groups is that all
doubly transitive groups are known [8, Theorem 5.3], and hence all doubly transitive groups
of prime degree are known.

Combining these results yields the following well-known classification of all transitive
groups of prime degree.

Definition 1 We use the following standard notation.

• Sp and Ap, respectively, denote a symmetric group and an alternating group of degree p,
• AGL(d, p) = Zd

p � GL(d, p) denotes the group of affine transformations of the d-
dimensional vector space Fd

p over Fp,
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• M11 and M23 denote Mathieu groups,
• PSL(d, q) and PGL(d, q), respectively, denote a projective special linear group and a

projective general linear group over the field Fq of q elements, and
• P�L(d, q) denotes the semidirect product of PGL(d, q) with the group of Galois auto-

morphisms of Fq .

Theorem 2 ([12, Corollary 4.2]) Suppose H is a subgroup of Sp that contains Zp. Let S
be a minimal normal subgroup of H, and let N = NSp (S), so S is simple and S ≤ H ≤ N.
Then N/S is cyclic, and either:
1. S = Zp, N = AGL(1, p), and N/S ∼= Zp−1; or
2. S = Ap, N = Sp, and N/S ∼= Z2; or
3. p = 11 and S = H = N = PSL(2, 11); or
4. p = 11 and S = H = N = M11; or
5. p = 23 and S = H = N = M23; or
6. p = (rdm+1 − 1)/(rdm − 1) for some prime r and natural numbers d and m, and we have

S = PSL(d, rdm
), N = P�L(d, rdm

), and N/S ∼= Zm.

In this paper, we will begin the classification of all transitive groups of degree p2. Our
starting point is Theorem 3 below (proved at the end of Section 3), which provides an
analogue of Burnside’s Theorem 1. This allows us to determine all of the transitive permu-
tation groups of degree p2 that do not have Sylow p-subgroup isomorphic to the wreath
product Zp � Zp (see Theorem 4; the proof appears at the end of Section 4). Furthermore,
Proposition 1 below describes how to construct every imprimitive permutation group of
degree p2 whose Sylow p-subgroup is isomorphic to Zp � Zp. (This proposition is proved
at the beginning of Section 5.) Unfortunately, this proposition does not provide a com-
plete classification of these permutation groups, because, in some cases, we do not have an
explicit description of the possible choices for K and φ in the conclusion of the proposi-
tion. However, Theorem 2 describes the possible choices for H and L , and, in most cases,
Section 5.1 describes the possible choices for K , and Section 5.2 describes the possible
choices for φ. This leads to a complete classification for most primes p; specifically, the
classification is complete for any prime p, such that p /∈ {11, 23} and p �= (qd −1)/(q −1),
for every prime-power q and natural number d. The problems that remain are described in
a remark at the end of Section 5.

Definition 2 (cf. Definition 5) Let P ′
p−1 denote the unique subgroup of Sp2 (up to conju-

gacy) having order p p and containing a transitive subgroup isomorphic to Zp × Zp (and
therefore not containing a transitive cyclic subgroup; see Lemma 4).

Theorem 3 Let G be a transitive permutation group of degree p2, p a prime, with Sylow
p-subgroup P. Then either
1. G is doubly transitive; or
2. P � G; or
3. P is equivalent to either Zp × Zp, P ′

p−1, or Zp � Zp.
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Theorem 4 Let G be a transitive group of degree p2 such that a Sylow p-subgroup P of
G is not isomorphic to Zp �Zp. Then, after replacing G by a conjugate, one of the following
is true.
1. G is doubly transitive, and either

• G = Ap2 or Sp2 ; or
• PSL(d, q) ≤ G ≤ P�L(d, q), where (qn − 1)/(q − 1) = p2; or
• Zp × Zp ≤ G ≤ AGL(2, p).

2. G is simply primitive, has an elementary abelian Sylow p-subgroup and either
• Zp × Zp ≤ G ≤ AGL(2, p); or
• G has a transitive, imprimitive subgroup H of index 2, such that H ≤ Sp × Sp (so

H is described in Lemma 1),
3. G is imprimitive, P �∼= Zp × Zp, P �∼= P ′

p−1, and P � G, so P ≤ G ≤ NSp2 (P) (and
NSp2 (P) is described in Lemma 5 or 6);

4. G is imprimitive, P = Zp × Zp and G ≤ Sp × Sp (so G is described in Lemma 1); or
5. G is imprimitive, P = P ′

p−1, and G = L P, where Zp × Zp ≤ L ≤ Sp × AGL(1, p)
(so L is described in Lemma 1).

Definition 3 ([9, p. 168]) Let H be a group and let A be an H -module. (That is, A is
an abelian group on which H acts by automorphisms. Also note that abelian groups, when
viewed as modules, are written additively.) A function φ: H → A is a crossed homomor-
phism if, for every h1, h2 ∈ H , we have

φ(h1h2) = h−1
2 · φ(h1) + φ(h2).

(This is equivalent to the assertion that the function H → H � A defined by h �→ (h, φ(h))
is a homomorphism.)

Proposition 1 Let
1. p be a prime;
2. H and L be transitive subgroups of Sp, such that L is simple;
3. K be an H-invariant subgroup of the direct product (NSp (L))p containing L p;
4. φ: H → NSp (L)p/K be a crossed homomorphism; and
5. G H,L ,K ,φ = {(h, v) ∈ H � NSp (L)p : φ(h) = vK } ≤ Sp � Sp.
Then G H,L ,K ,φ is a transitive, imprimitive subgroup of Sp2 , such that a Sylow p-subgroup
of G is isomorphic to Zp � Zp.

Conversely, if G is a transitive, imprimitive permutation group of degree p2, such that
a Sylow p-subgroup of G is isomorphic to Zp � Zp, then G is equivalent to G H,L ,K ,φ, for
some H, L , K , and φ as above.

To some extent, our proofs follow the outline that was used to determine all transitive
groups of prime degree.

In Section 2, we recall known results that provide a classification of certain types of
transitive permutation groups of degree p2, namely, doubly transitive groups, groups with
elementary abelian Sylow p-subgroup, and simply primitive groups. (Recall that a permu-
tation group is simply primitive if it is primitive, but not doubly transitive.)
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In Section 3, we extend Theorem 1 to transitive groups of degree p2. It follows by [33,
Theorem 3.4′] that every transitive group of prime power degree contains a transitive Sy-
low p-subgroup; in particular, every transitive group of degree p2 contains a transitive
Sylow p-subgroup. We first show that there are exactly 2p − 1 transitive p-subgroups
of Sp2 up to permutation isomorphism and explicitly determine them (see Theorem 9).
We also calculate the normalizer of each of these p-subgroups (see Lemmas 5 and 6).
Next, we prove Theorem 3, which extends Burnside’s Theorem 1 to transitive groups of
degree p2; that is, it determines which of these 2p − 1 p-subgroups P have the prop-
erty that if G ≤ Sp2 with Sylow p-subgroup P , then either P � G or G is doubly tran-
sitive. Happily, only three of the 2p − 1 transitive p-subgroups of Sp2 fail to have this
property.

We are left with the problem of finding every imprimitive or simply primitive sub-
group of Sp2 whose Sylow p-subgroup is one of the three transitive p-subgroups of Sp2

for which the extension of Burnside’s Theorem mentioned above does not hold. Two of
these p-subgroups are Z2

p and the group P ′
p−1 (see Definition 2 or 5), which can, in a

natural way, be regarded as the “dual” of Z2
p. These two p-subgroups are considered

in Section 4, and the remaining p-subgroup, Zp � Zp, is considered in Section 5. How-
ever, as explained in the comments before Definition 2, our results on Zp � Zp are not
complete.

In Section 6, we prove some straightforward applications of the above results that are of
interest to combinatorialists.

We remark that some of the intermediate results (as well as some of the applications) in
this paper are known, and will give appropriate references as needed.

2. Some known results

2.1. Doubly transitive groups

The doubly transitive groups of degree p2 can be determined much as in the case of degree p.
Burnside [6, p. 202] proved the following result.

Theorem 5 (Burnside, [6]) The socle of a finite doubly transitive group is either a regular
elementary abelian p-group, or a nonregular nonabelian simple group.

If G is doubly transitive of degree p2, then it is not difficult to show that the socle of G
is abelian if and only if G ≤ AGL(2, p). (Note that an elementary abelian group of order
p2 is isomorphic to Z2

p. Also, we remark that the doubly transitive subgroups of AGL(d, p)
have been determined [16, 20], cf. [8, proof of Theorem 5.3]).

The doubly transitive groups with nonabelian socle are listed in [8, Table on p. 8]. (This
result relies on the classification of finite simple groups.) By inspection of this list, we see
that the only such doubly transitive groups of degree p2 are as follows.

Theorem 6 Let G be a doubly transitive group of degree p2 with nonabelian socle. Then
either G = Ap2 , or G = Sp2 , or PSL(d, q) ≤ G ≤ P�L(d, q).
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2.2. Imprimitive groups with elementary abelian Sylow p-subgroup

In [22, Proposition B], Jones determined the imprimitive permutation groups of degree p2

whose Sylow p-subgroup is elementary abelian of order p2.

Theorem 7 (Jones, [22]) Let G be an imprimitive permutation group of degree p2, where
p is prime, such that a Sylow p-subgroup of H is elementary abelian of order p2. Then
G ≤ Sp × Sp.

The following simple lemma expresses the conclusion of Theorem 7 more concretely.

Lemma 1 Let G be a transitive subgroup of Sp2 . The following are equivalent:
1. G ≤ Sp × Sp.
2. There are transitive subgroups H and K of Sp, such that H × K ≤ G ≤ NSp (H ) ×

NSp (K ).
3. There are transitive subgroups H and K of Sp,and a homomorphism f : H → NSp (K )/K ,

such that G = {(σ, τ ) ∈ H × NSp (K ) : f (σ ) = τ K }.

Proof: (1 ⇒ 2) Let H = G ∩ (Sp × 1) and K = G ∩ (1 × Sp), so H, K � G. Then
G ≤ NSp×Sp (H × K ) = NSp (H ) × NSp (K ).

(1 ⇒ 3) Let H be the image of G under the projection to the first factor, and let K = G ∩
(1×Sp). Then G ≤ H ×NSp (K ). By definition of K , we have (G/K ) ∩ [1×(NSp (K )/K )] =
1, so G/K is the graph of a well-defined homomorphism f : H → NSp (K )/K . The desired
conclusion follows.

(2 ⇒ 1) and (3 ⇒ 1) are obvious.

2.3. Simply primitive groups

The simply primitive groups of degree p2 are given by the following theorem of Wielandt
[34, Theorems 8.5 and 16.2]. (Recall that any subgroup H as in part (2) of this result is
described in Lemma 1.)

Theorem 8 (Wielandt, [34]) Let G be a simply primitive permutation group of degree p2,

where p is prime. Then the Sylow p-subgroups of G are elementary abelian of order p2,

and either
1. G has a unique elementary abelian Sylow p-subgroup, or
2. G has an imprimitive subgroup H of index 2 (and, from Theorem 7, we have H ≤

Sp × Sp).

3. The extension of Burnside’s Theorem

In view of the results in Section 2, this section is mainly concerned with imprimitive groups
G of degree p2 whose Sylow p-subgroups P are not elementary abelian. We begin in a
slightly more general context.
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Let G be a transitive permutation group of degree mp acting on Zm × Zp that admits a
complete block system B of m blocks of cardinality p. We may suppose without loss of
generality that G acts on Zm × Zp such that B = {{i} × Zp : i ∈ Zp}. If g ∈ G, then g
permutes the m blocks of B and hence induces a permutation in Sm denoted g/B. We define
G/B = {g/B : g ∈ G}. Let fixG(B) = {g ∈ G : g(B) = B for every B ∈B}. Assume that
fixG(B) �= 1 so that a Sylow p-subgroup P0 of fixG(B) is nontrivial. Then P0 is contained in
〈zi : i ∈ Zm〉, where each zi is a p-cycle that permutes the elements of {i}×Zp. For h ∈ P0,
we then have that h = ∏m−1

i=0 zai
i , ai ∈ Zp. Define v: P0 → Zm

p by v(h) = (a0, a1, . . . , am−1).

Lemma 2 The set {v(h) : h ∈ P0} is a linear code of length m over Fp.

Proof: As a linear code of length m over Fp is simply an m-dimensional vector space
over Fp, we need only show that {v(h) : h ∈ P0} is a vector space. Note that for g, h ∈ P0

and r ∈ Zp, we have

gr =
(

m−1∏
i=0

zai
i

)r

=
m−1∏
i=0

zrai
i

and

gh =
m−1∏
i=0

zai
i

m−1∏
i=0

zbi
i =

m−1∏
i=0

zai +bi
i .

Hence v(gr ) = rv(g) and v(gh) = v(g) + v(h), so {v(h) : h ∈ P0} is a linear code.

Definition 4 The code of Lemma 2 will be denoted by CB, and will be called the code
induced by B. If G admits a unique block system B of m blocks of cardinality p, we say
CB is the code over Fp induced by G. We remark that CB depends upon the choice of the
Sylow p-subgroup P0, but that different choices of P0 give monomially equivalent (that is,
isomorphic) codes.

Remark Lemma 2 was proven in a less general context in [17].

Lemma 3 If there exists x ∈ G such that x(i, j) = (i + 1, α j + bi ), bi ∈ Zp, α ∈ F∗
p,

then {v(h) : h ∈ P0} is a cyclic code of length m over Fp. Conversely, if C is a cyclic code
of length m over Fp, then there exists a group G as above such that P0 = {∏m−1

i=0 zai
i :

(a0, a1, . . . , am−1) ∈ C}.

Proof: From the form of x , we know that x normalizes 〈zi : i ∈ Zm〉. Also, because x ∈ G,
we know that x normalizes fixG(B). Thus, x normalizes 〈zi : i ∈ Zm〉 ∩ fixG(B) = P0.

For h = ∏
zai

i ∈ P0 we have x−1hx = ∏
zαai+1

i , so, because x normalizes P0, we see that
the linear code {v(h) : h ∈ P0} is cyclic.

Conversely, define x : Zm × Zp → Zm × Zp by x(i, j) = (i + 1, j). Then it is also
straightforward to check that G = {xi g : i ∈ Zm, g ∈ C} will do.
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In the following we consider the case m = p, where Zp × Zp is identified with Zp2 via
(a, b) �→ a + bp.

Definition 5 Let ai, j = ( i
j )(−1)i− j . A straightforward calculation will show that ai, j−1 =

ai+1, j + ai, j . For 1 ≤ i ≤ p, let

γi = z
ap−i,0

0 z
ap−i,1

1 . . . z
ap−i,p−1

p−1 .

Define τ : Zp2 → Zp2 by

τ (i) = i + 1 (mod p2)

and ρ1, ρ2: Z2
p → Z2

p by

ρ1(i, j) = (i, j + 1) and ρ2(i, j) = (i + 1, j).

Using the above identification of Zp × Zp with Zp2 , we have, for example,

zi (a + bp) =
{

a + bp if a �= i

a + (b + 1)p (mod p2) if a = i,

ρ1 = ∏p−1
i=1 zi and ρ2(a + bp) = (a + 1) (mod p) + bp. Hence τ = z p−1ρ2. Let

Pi = 〈τ, γi 〉 and P ′
i = 〈ρ1, ρ2, γi 〉,

for 1 ≤ i ≤ p. We remark that Pp = P ′
p

∼= Zp � Zp. There are thus 2p − 1 distinct groups
Pi , P ′

i , 1 ≤ i ≤ p.

Theorem 9 Let G be a transitive group of degree p2 with Sylow p-subgroup P. Let
|P| = pi+1, i ≥ 1.
• If τ ∈ P, then P = Pi .
• If 〈ρ1, ρ2〉 ≤ P, then P = α−1 P ′

i α for some α ∈ Aut(Z2
p).

Proof: By [27], if C is a cyclic code of length p over Fp, then C has generator polynomial
f (x), where f (x) divides x p −1 in Zp[x]. By the Freshman’s Dream [21], x p −1 = (x −1)p

so that f (x) = (x − 1)i for some 0 ≤ i ≤ p − 1. As C is generated by the cyclic shifts of
the vector (ai,0, ai,1, . . . , ai,p−1) where (x −1)i = ∑i

j=0 ai, j x j , we have ai, j = ( i
j )(−1)i− j .

Finally, we remark that the dimension of the code C is p − i .
Let G be a transitive group of degree p2 such that τ ∈ G. Let P be the Sylow p-subgroup

of G that contains τ . Then P admits a complete block system B of p blocks of cardinality
p formed by the orbits of 〈τ p〉. Then |fixGB| = pi and C = {v(g) : g ∈ fixG(B)} is a cyclic
code of length p over Fp by Lemma 3, so that C contains pi codewords and is thus of
dimension i . We conclude that P = 〈τ, ∏p−1

i=0 zai
i : (a0, a1, . . . , ap−1) ∈ C〉 = 〈τ, γi 〉.

If 〈ρ1, ρ2〉 ≤ P , then again P admits a complete block system B formed by the or-
bits of 〈δ〉, where 〈δ〉 = 〈ρ1〉 or 〈ρi

1ρ2〉, 0 ≤ i ≤ p − 1. Hence there exists a group
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automorphism α of Z2
p such that α−1δα = ρ2. It then follows by arguments above that

P = α−1〈ρ1, ρ2, γi 〉α.

Remark Every transitive group G of degree p2 contains a subgroup isomorphic to either
〈τ 〉 or 〈ρ1, ρ2〉, as every Sylow p-subgroup of G is transitive and contains a nontrivial center.
Hence the above result determines all transitive p-subgroups of Sp2 up to isomorphism.

Remark Theorem 9 was already proven in [19] for the case where P contains a regular
subgroup isomorphic to 〈τ 〉.

Lemma 4 Let P be a transitive p-subgroup of Sp2 . Then P admits a complete block
system B of p blocks of cardinality p.

Furthermore, the following are equivalent:
1. P does not contain regular copies of both Zp2 and Z2

p.
2. P �∼= Zp � Zp.
3. Letting C be the code induced by B, we have

∑p−1
i=0 ai ≡ 0 (mod p), for every

(a0, a1, . . . , ap−1) ∈ C.

Proof: (1 ⇒ 2) If P ∼= Zp � Zp, then P is a Sylow p-subgroup of Sp2 , so it is clear that
P contains both a regular subgroup isomorphic to Zp2 and a regular subgroup isomorphic
to Z2

p.
(2 ⇒ 1) Assume P contains regular copies of both Zp2 and Z2

p. Without loss of generality
assume that τ ∈ P . As P contains a nontrivial center, τ p ∈ Z (P), so that P admits a complete
block system B of p blocks of cardinality p formed by the orbits of 〈τ p〉. As P contains
a regular subgroup isomorphic to Z2

p, there exists τ1, τ2 ∈ P such that 〈τ1, τ2〉 ∼= Z2
p. As

|P/B| = p, we assume without loss of generality that τ2/B = 1 so that |τ1/B| = p. As
|τ1| = p, τ−1

1 τ pτ1 = τ p and |τ p| = p, we may assume that τ2 = τ p. We regard Zp2 as Z2
p.

Hence τ (i, j) = (i +1, δi ( j)) where δi ( j) = j , 0 ≤ i ≤ p−2 and δp−1( j) = j +1. Further,
τ1(i, j) = (i +r, j +bi ), r, bi ∈ Zp. As |τ1| = p,

∑p−1
i=0 bi ≡ 0 (mod p). We assume without

loss of generality that r = 1. Then τ−1τ1(i, j) = (i, j + ci ) where
∑p−1

i=0 ci ≡ −1 (mod p).
Then fixP (B) = 〈τ, τ− jγiτ

j : 1 ≤ j ≤ p − 1〉, for some 1 ≤ i ≤ p. If 1 ≤ k ≤ p − 1 and
ψ ∈ Pk with ψ(i, j) = (i, j + di ), we have that

∑p−1
i=0 di ≡ 0 (mod p). Hence i = p and

〈τ, τ−1τ1〉 ∼= Zp � Zp as required.
(3 ⇒ 2) Obvious.
(2 ⇒ 3) If P �∼= Zp � Zp, then, from the proof of Theorem 9, we see that the generating

polynomial of C is divisible by x − 1. The desired conclusion follows.

We now calculate the normalizers of Pi and P ′
i , i ≤ p. (We remark that the normalizer

of each Pi was calculated in [19].)

Definition 6 For β ∈ F∗
p, define β̄, β̃: Z2

p → Z2
p by

β̄(i, j) = (βi, j) and β̃(i, j) = (i, β j).
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For β ∈ Z∗
p2 define β̂: Zp2 → Zp2 by

β̂(i) = βi.

Remark Of course, NSp2 (Pi ) admits a (unique) complete block system B of p blocks of
cardinality p formed by the orbits of 〈τ p〉. It is straightforward to show that fixNS

p2 (Pi )(B)
is a p-group of order pi , 1 ≤ i ≤ p − 1.

Lemma 5 ([19]) We have

NSp2 (Pi ) =
{

Pi+1 � {β̂ : β ∈ Z∗
p2 , |β| ∈ {1, p − 1}} if 1 ≤ i ≤ p − 1

Pp � {β̄, β̃ : β ∈ F∗
p} if i = p.

Proof: It is well known that

NSp2 (P1) = NSp2 (〈τ 〉) = {x �→ ax + b : a ∈ Z∗
p2 , b ∈ Zp2}

and it essentially follows by arguments in [1] and was explicitly shown in [19] that

NSp2 (Pp) = Pp � {β̄, β̃ : β ∈ F∗
p},

so we may assume 2 ≤ i ≤ p − 1.
We first show that |NSp2 (Pi )| = (p − 1)pi+2.
Let X = {〈x〉 : 〈x〉 is a regular cyclic subgroup of Sp2} and let Sp2 act on X by conju-

gation. Denote the resulting transitive permutation group on X by �. Note that there are
p2!/(p − 1)p3 = [Sp2 : NSp2 (〈τ 〉)] elements of X . As 〈τ p〉 ≤ Z (Pi ) and is the unique
subgroup of Z (Pi ) of order p, NSp2 (Pi ) admits a complete block system B of p blocks of
cardinality p, formed by the orbits of 〈τ p〉. Observe that if 〈x〉 ∈ X and 〈x〉 ≤ Pi , then we
may assume that x = τγ , γ ∈ fixPi (B). Then |fixPi (B)| = pi , and by Lemma 4 τγ is a
p2-cycle for every γ ∈ fixPi (B) as every minimal transitive subgroup of Pi is isomorphic to
Zp2 . Furthermore, there are exactly p elements of 〈τγ 〉 contained in fixPi (B). We conclude
that Pi contains pi/p = pi−1 elements of X . Let B = {〈τγ 〉 : γ ∈ fixPi (B)}. We first will
show that B is a block of �.

Let δ ∈ Sp2 such that δ−1 Bδ ∩ B �= ∅. Then there exists x = τγ , γ ∈ fixPi (B) such
that δ−1〈x〉δ ≤ Pi . Then δ−1〈x〉δ/B = 〈x〉/B and hence δ−1〈y〉δ/B = 〈τ 〉/B for every
〈y〉 ∈ B. Then 〈δ−1 Bδ〉 satisfies the hypothesis of Lemma 3 (as δ−1〈x〉δ ≤ Pi ) so the code
corresponding to 〈δ−1 Bδ〉 is the code corresponding to 〈B〉 which implies 〈δ−1 Bδ〉 = 〈B〉 so
that δ−1 Bδ = B as required. Hence the number of subgroups conjugate in Sp2 to Pi = 〈B〉
is the number of blocks conjugate to B in �. As there are (p2!/p3(p−1))/pi−1 such blocks,
|NSp2 (Pi )| = (p − 1)pi+2 as required.

It is straightforward to check using the recursion formula given in Definition 5 that
γi+1 ∈ NSp2 (Pi ). Note that the result is clearly true for i = 1 as 〈τ, γ2〉 ≤ NSp2 (〈τ 〉). Hence
NSp2 (〈τ 〉) ≤ NSp2 (〈τ, γ3〉) as 〈τ, γ2〉 is the unique Sylow p-subgroup of NSp2 (〈τ 〉).
Continuing inductively, we have that NSp2 (〈τ 〉) ≤ NSp2 (〈τ, γi ) and as |〈NSp2 (〈τ 〉), γi 〉| =
(p − 1)pi+2, the result follows.
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Lemma 6 We have

NSp2 (P ′
i ) =




AGL(2, p) if i = 1

P ′
i+1 � {β̄, β̃ : β ∈ F∗

p} if 2 ≤ i ≤ p − 1

P ′
p � { β̄, β̃ : β ∈ F∗

p} if i = p.

Proof: The case i = 1 is well known, and the case i = p appears in Lemma 5, so we may
assume 2 ≤ i ≤ p − 1.

Because i ≥ 2, we know that 〈τ2〉 = Z (P ′
i ) is characteristic in P ′

i , so that 〈τ2〉 � NSp2 (P ′
i ).

Hence if δ ∈ NSp2 (P ′
i ), then δ(i, j) = (σ (i), γ j +bi ), σ ∈ Sp, γ ∈ F∗

p, bi ∈ Zp. Furthermore,
σ (i) = βi +b, β ∈ F∗

p, b ∈ Zp. It is straightforward to check that β̄, γ̃ ∈ NSp2 (P ′
i ), so we may

assume β = γ = 1. As τ1 ∈ P ′
i , we may assume without loss of generality that b = 0. As

γ1, γ2, . . . , γi ∈ P ′
i , we may assume, for 0 ≤ k ≤ i −1, that bk = 0. It is then straightforward

to show that δ ∈ 〈γi+1〉.

Definition 7 A code C of length m over Fp is said to be degenerate if there exists
k | m, k �= m, and a code D of length k over Fp such that C = ⊕m/k

i=1 D. That is, a code
C = {(d1, d2, . . . , dm/k) | d1, . . . , dm/k ∈ D}. If C is not degenerate, we say that it is non-
degenerate.

Lemma 7 Let G ≤ Sp2 admit a complete block system B of p blocks of cardinality p. If
fixG(B) contains at least two Sylow p-subgroups and CB is nondegenerate, then a Sylow
p-subgroup of G is isomorphic to Zp × Zp.

Proof: We assume that 〈τ 〉 ≤ G or 〈ρ1, ρ2〉 ≤ G. Let P be a Sylow p-subgroup of G
that contains 〈τ 〉 or 〈ρ1, ρ2〉. Observe that P cannot contain both 〈τ 〉 and 〈ρ1, ρ2〉, for then
Lemma 4 would imply P ∼= Zp � Zp, in which case CB is degenerate. If fixG(B) contains at
least two Sylow p-subgroups, then fixG(B)|B contains at least two Sylow p-subgroups for
every B ∈B and hence, by the comments following Theorem 1, is nonsolvable. By Theorem
1 fixG(B)|B is doubly transitive for every B ∈B.

Suppose, for the moment, that fixP (B) is faithful on some block of B. Then a Sylow
p-subgroup of G has order p2. If P = 〈ρ1, ρ2〉, we are finished, so we assume that P =
〈τ 〉 and hence fixP (B) = 〈τ p〉. Clearly 〈τ p〉|B is a Sylow p-subgroup of fixG(B)|B , and
if NfixG (B)|B (〈τ p〉|B) = 〈τ p〉|B , then by Burnside’s Transfer Theorem [14, Theorem 4.3,
p. 252], 〈τ p〉|B has a normal p-complement in fixG(B)|B . Whence fixG(B)|B admits a
complete block system of p blocks of cardinality m, where m �= 1, a contradiction. Thus
NfixG (B)|B (〈τ p〉|B) �= 〈τ p〉|B , so there exists δ ∈ fixG(B) − 〈τ p〉 such that δ−1τ pδ = τ ap,
a �= 1. By the remark preceding Lemma 5, δ �∈ NSp2 (〈τ 〉), so that δ−1τδτ−1 ∈ fixG(B), but

δ−1τδτ−1 �∈ 〈τ p〉. A straightforward computation will then show that δ−1τδτ−1 centralizes
〈τ p〉. As δ−1τδτ−1 ∈ fixG(B), δ−1τδτ−1|B centralizes 〈τ p〉|B , and of course, 〈τ p〉|B is
regular and abelian. As a regular abelian group is self-centralizing [33, Proposition 4.4], we
conclude that δ−1τδτ−1|B ∈ 〈τ p〉|B . Whence δ−1τδτ−1 has order p and 〈τ p, δ−1τδτ−1〉 ≤
fixG(B) and has order p2, a contradiction.
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Henceforth, we assume that fixP (B) is not faithful on any block of B, so the Sylow p-
subgroups of fixG(B) have order at least p2. Let γ ∈ fixG(B) such that γ |B �= 1 for the
fewest number of blocks B ∈B, and let C = {B ∈B : γ |B �= 1}. If ∪C is a block of G,
then CB is degenerate and we are finished. Otherwise, define π : fixG(B) → S∪(B−C) by
π (g) = g|∪(B−C). Then γ ∈ Ker(π ). As Ker(π ) � fixG(B) and fixG(B)|B is primitive for
every B ∈B, Ker(π )|B is transitive for every B ∈ C. Hence we may assume |γ | = p. As
any two Sylow p-subgroups of fixG(B) are conjugate and one Sylow p-subgroup of fixG(B)
is contained in 〈zi : i ∈ Zp〉, we assume without loss of generality that γ ∈ 〈zi : i ∈ Zp〉.
Finally, observe that as γ ∈ fixG(B) such that γ |B �= 1 for the fewest number of blocks of
B, 〈γ 〉 is a Sylow p-subgroup of Ker(π ). As Ker(π ) � fixG(B), Ker(π )|B contains at least
2 Sylow p-subgroups. It then follows by Burnside’s Transfer Theorem that NKer(π )(〈γ 〉) �=
〈γ 〉.

Let γ = z
ai1
i1

z
ai2
i2

. . . zair
ir

. Let δ ∈ NKer(π )(〈γ 〉) such that δ �∈ 〈γ 〉. Then δ−1γ δ = z
bai1
i1

z
bai2
i2

. . . zbair
ir

, for some b ∈ Z∗
p. As ∪C is not a block of G, there exists ι ∈ G such that

ι−1(∪C)ι ∩ (∪C) �= ∅ and ι−1(∪C)ι �= ∪C. Let ι−1γ ι = z
c j1
j1

z
c j2
j2

. . . z
c jr
jr

, for some j1, j2, . . . ,
jr ∈ Zpk−1 and c j� ∈ Z∗

p. Then δ−1ι−1γ ιδ(ι−1γ ι)−b|B �= 1 for fewer blocks of B than γ , a
contradiction.

Definition 8 For a code C of length n over a field Fp of prime order p, let Aut(C) be the
group of all linear bijections of K n which map each codeword of C to a codeword of C of
the same weight. Thus Aut(C) is the subgroup of Mn(Fp) that map each codeword of C to
a codeword of C , where Mn(Fp) is the set of all n × n monomial matrices over Fp. That is,
matrices with exactly one nonzero entry from Fp in each row and column.

Let [mi j ] = M ∈ Mn(Fp). Then M = PD, where P = [pi j ] is the permutation matrix
given by pi j = 1 if mi j �= 0 and pi j = 0 otherwise and D = [di j ] is a diagonal matrix
with dii = mi j if mi j �= 0 and di j = 0 if i �= j . As the group of all permutation matrices is
simply the symmetric group on the coordinates of a vector in Fn

p, there is thus a canonical
isomorphism between Mn(Fp) and Sn � (F∗

p)n , with multiplication in Sn � (F∗
p)n given by

(σ, a)(τ, b) = (στ, (σ−1b)a) and Sn �(F∗
p)n acts on Fn

p by (σ, d)(x) = σ (xd). We will abuse
notation and write that (σ, d) = M ∈ Mn(Fp). If (σ, d) ∈ Aut(C), then (σ, d) is diagonal if
and only if σ = 1. Finally, we let PAut(C) = {σ : (σ, d) ∈ Aut(C)}.

Theorem 10 ([26], Theorem 1.3) If C is a nontrivial code such that PAut(C) is primitive,
then C is nondegenerate and every diagonal automorphism of C is scalar.

Definition 9 A code C of length p over Fp is affine invariant if AGL(1, p) ≤ PAut(C).

Let P ≤ Sp2 be a transitive p-group. Then P admits a complete block system B of p
blocks of cardinality p, formed by the orbits of a semiregular element of order p contained
in the center of P . By Theorem 9, we may assume that P = Pi or P ′

i . Note that if G ≤ Sp2

admits B as a complete block system with Sylow p-subgroup P , then conjugation by an
element of G induces an automorphism of CB. It then follows by Lemmas 5 and 6 that CB
is affine invariant.
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Theorem 11 ([18], Theorem 3.17) Let C be a cyclic code of length p over Fp such that
|C | �= p, p p−1 or p p. Then Aut(C) = {(σ, d) : σ ∈ AGL(1, p) and d ∈ F∗

p}.

Lemma 8 Let G ≤ Sp2 be transitive such that G admits a complete block system B of p
blocks of cardinality p. Furthermore, assume either P1 or Pp−2 is a Sylow p-subgroup of
G and fixG(B) is a p-group. Then G/B ≤ AGL(1, p).

Proof: We argue by contradiction and thus assume that G/B has at least 2 Sylow p-
subgroups and is doubly transitive. As G/B has at least 2 Sylow p-subgroups and a Sylow
p-subgroup of G is P1 or Pp−2, there exists g ∈ G such that |g/B| = p, g is of order
a power of p, but g/B �∈ 〈τ 〉/B. As g is contained in a Sylow p-subgroup of G (which
is isomorphic to P1 or Pp−2), we have that 〈g〉 is cyclic and regular of order p2. As G
admits B as a complete block system and fixG(B) is a p-group, we have that g(i + j p) =
σ (i) + (αi j + bi )p, σ ∈ Sp, αi ∈ F∗

p, bi ∈ Zp. It follows by [18, Theorem 3.16(i)] that
αi = α j for all i ∈ Zp. As |g| = p2, we have that αi = 1 for all i, j ∈ Zp. As |g| = p2,∑p−1

i=0 bi ≡ c �≡ 0 (mod p). Then there exists r ∈ Zp such that gτ r/B has a fixed point, and
gτ r/B �= 1. Let d = |gτ r/B|, and O1,O2, . . . ,Os the orbits of 〈gτ r/B〉. Let di = |Oi |.
Then (gτ r )d ∈ fixG(B) so that if (gτ r )d = zb0

0 zb1
1 . . . z

bp−1

p−1, then
∑p−1

i=0 bi ≡ 0 (mod p). Let

gτ r (i + j pk−1) = δ(i) + ( j + ci )p. Then
∑p−1

i=0 ci ≡ c + r (mod p). Further,

p−1∑
i=0

bi =
s∑

i=0

(∑
j∈Oi

ai

)

=
s∑

i=0

di

(
d

di

∑
j∈Oi

ci

)

=
p−1∑
i=0

dci

≡ d(c + r ) (mod p).

Note that as a Sylow p-subgroup of G/B is cyclic, gcd(d, p) = 1. As
∑p−1

i=0 bi ≡ 0 (mod p)
and (d, p) = 1, we have that c ≡ −r (mod p). However, there exists t ∈ Z∗

p, t �= r such
that gτ t/B has a fixed point, and analogous arguments will show that c ≡ −t (mod p), a
contradiction.

Let G be a transitive group acting on �, and let G act on �×� by g(α, β) = (g(α), g(β)).
Let O0,O1, . . . ,On be the orbits of G acting on � × �. We call the orbit {(α, α) : α ∈ �}
the trivial orbit. Assume O0 is the trivial orbit, and define directed graphs �1, . . . , �n by
V (�i ) = � and E(�i ) = Oi for each 1 ≤ i ≤ n. The graphs �i are orbital digraphs of G.
Note that G ≤ Aut(�i ) for all 1 ≤ i ≤ n. We define the 2-closure of G, denoted cl(G) to
be

⋂n
i=1 Aut(�i ).

Proof of Theorem 3: Let G ≤ Sp2 be transitive such that P �∼= P ′
1, P ′

p−1, or Zp � Zp. If
τ ∈ P , then, as Zp2 is a Burnside group [33], G is either doubly transitive or imprimitive (this
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may also be obtained from a result of Guralnick [15]), so we may assume G is imprimitive.
If τ �∈ G, then, as p3 | |G|, we see from [1, 13] that any orbital digraph �i of G is either
complete, empty, or a nontrivial wreath product. We conclude that τ ∈ cl(G) so that G is
again imprimitive or doubly transitive. We consider the cases P ∼= Pi and P ∼= P ′

i for some
i separately.

If P ∼= Pi , then by Lemma 7 fixG(B) contains a unique Sylow p-subgroup. If fixG(B) is a
p-group and P ∼= P1 or Pp−2, then it follows by Lemma 8 that G/B ≤ AGL(1, p). Then G/B
contains exactly one Sylow p-subgroup, and P � G. If fixG(B) is a p-group and P �∼= P1

or Pp−2, then it follows by Theorem 11 that G/B≤ AGL(1, p) and the result follows. If
fixG(B) is not a p-group, then observe that conjugation of the unique Sylow p-subgroup of
fixG(B) by an element of G induces an automorphism of CB, the code induced by B. Let
g ∈ fixG(B) such that g is not in the unique Sylow p-subgroup of G. Let (σ, d) be the auto-
morphism of CB induced by conjugating the unique Sylow p-subgroup of fixG(B) by g. Then
σ = 1 so that (σ, d) is diagonal. As CB has prime length, PAut(CB) is primitive, and hence by
Theorem 10, we have that (σ, d) is scalar. Whence g(i + j p) = i + (d j + bi )p. A straight-
forward computation will then show that g−1τgτ−1 is in the unique Sylow p-subgroup
of fixG(B) so that g−1τg ∈ Pi . Thus g ∈ NSp2 (Pi ). However, by Lemma 5, fixNS

p2 (Pi )(B)
contains no element of order relatively prime to p, a contradiction.

If P ∼= P ′
i , then by Lemma 7, fixG(B) contains exactly one Sylow p-subgroup, and

by arguments in the immediately preceding paragraph, if g ∈ fixG(B) such that |g| �=
p, then g(i, j) = (i, d−1 j + bi ), d ∈ F∗

p, bi ∈ Zp. It is then straightforward to verify that
g ∈ NSp2 (P ′

i ). By Theorem 11, 〈τ1〉/B � G/B. Thus H = 〈P ′
i , fixG(B)〉 � G, and P ′

i � H .
As P ′

i is a Sylow p-subgroup of G, it is the unique Sylow p-subgroup of H and so P ′
i is

characteristic in H . As H � G, we have that P ′
i � G.

4. Overgroups of Z2
p and its “dual”

Lemma 9 Let G be an imprimitive group of degree p2 with Sylow p-subgroup isomor-
phic to P ′

p−1. Let B be the unique complete block system of P ′
p−1 of p blocks of cardi-

nality p. Then there exists a subgroup H ≤ Sp × AGL(1, p) such that G is equivalent
to H · fixP ′

p−1
(B).

Proof: We assume without loss of generality that a Sylow p-subgroup of G is P ′
p−1 so

that G admits B as a complete block system. As P ′
p−1 is a Sylow p-subgroup of G, CB is

nondegenerate. It then follows by Lemma 7 that fixG(B) is solvable and hence fixG(B)|B ≤
AGL(1, p) for every B ∈B. We now show that if g ∈ G, then g ∈ NSp2 (〈τ2〉).

As fixG(B)|B ≤ AGL(1, p) for every B ∈B if g ∈ G, then g(i, j) = (σ (i), αi j + bi ),
where σ ∈ Sp, αi ∈ F∗

p and bi ∈ Zp. To show that g ∈ NSp2 (〈τ2〉) is suffices to show that
αi = α j for every i, j ∈ Zp. As a Sylow p-subgroup of G is P ′

p−1, by Lemma 4 CB consists
of all vectors in F

p
p such that the sum of the coordinates is congruent to 0 modulo p. We

conclude that zi z
p−1
j ∈ fixG(B) for every i �= j ∈ Zp. Then gzi z

p−1
j g−1 = zαi

σ (i)z
α j (p−1)
σ ( j) . As

gzi z
p−1
j g−1 ∈ fixG(B), we must have that αi + α j (p − 1) ≡ 0 (mod p), so that αi = α j .

Thus if g ∈ G, then g ∈ NSp2 (〈τ2〉).
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Let B ∈B and L = {g ∈ G : g(B) = B}. Then L has a unique Sylow p-subgroup
P , namely the Sylow p-subgroup of fixG(B), so that P � L . By the Schur-Zassenhaus
Theorem [14, Theorem 2.1, p. 221] L contains a p′-subgroup M which is a complement
to P in L . Let P ′ = 〈zi : i ∈ Zp〉 and W = G · P ′. Note that |W | = p · |G|, and let
K = {w ∈ W : w(B) = B}. Then P ′ � K and is the Sylow p-subgroup of K . Again by the
Schur-Zassenhaus Theorem, as P ′ is solvable, any two p′-subgroups of K are conjugate
in W . As M is a p′-subgroup of L , M is a p′-subgroup of K . Recall that if g ∈ G, then
g(i, j) = (σ (i), α j + bi ), σ ∈ Sp, α ∈ F∗

p, and bi ∈ Zp. For g ∈ G, define ĝ: SZ2
p

→ SZ2
p

by

ĝ(i, j) = (σ (i), α j), and let M̂ = {ĝ : g ∈ M}. Clearly M̂ is a subgroup and |M̂ | = |M |.
Furthermore, as P ′ = 〈zi : i ∈ Zp〉, M̂ ≤ K . Thus M̂ is also a p′ subgroup of K so that
there exists δ ∈ P ′ such that δ−1 Mδ = M̂ . Let G ′ = δ−1Gδ. Clearly M̂ ≤ G ′ and as
δ ∈ P ′ ≤ NSp2 (P ′

p−1) we have that P ′
p−1 ≤ G ′. Let H = 〈τ1, M̂〉. Then H ≤ G ′ and for

every h ∈ H , h(i, j) = (σ (i), α j) so that H ≤ Sp × AGL(1, p). As |M | = |G|/p p we have
that |H | = |G|/p p−1 so that |H · fixP ′

p−1
(B)| = |G| = |G ′|. As H · fixP ′

p−1
(B) ≤ G ′, we

conclude that G ′ = H · fixP ′
p−1

(B) and the result follows.

Proof of Theorem 4: (1) Follows from Lemma 6, and (2) follows from Theorem 8.
Thus, we assume, henceforth, that G is imprimitive. By Theorem 9 the Sylow p-subgroups

of G are isomorphic to Pi or P ′
i , 1 ≤ i ≤ p. If no Sylow p-subgroup of G is isomorphic to

P ′
1 or P ′

p−1, then (3) follows from Theorem 3. If a Sylow p-subgroup of G is isomorphic
to P ′

1, then (4) follows from Theorem 7 and Lemma 1. Finally, if a Sylow p-subgroup of G
is isomorphic to P ′

p−1, then (5) follows from Lemma 9.

5. Imprimitive subgroups that contain a Sylow p-subgroup of Sp2

Note that Zp � Zp is a Sylow p-subgroup of Sp2 .

Proof of Proposition 1: (⇒) Because NSp (L)/L is cyclic (see Theorem 2), we know that
(NSp (L)/L)p is abelian, so it is obvious that K/L p is a normal subgroup of (NSp (L)/L)p;
hence K is a normal subgroup of NSp (L)p. Then, because φ is a crossed homomorphism and
K is H -invariant, it is easy to verify that G H,L ,K ,φ is closed under multiplication. Therefore,
it is a subgroup of Sp � Sp.

It is straightforward to verify that K is a normal subgroup of G H,L ,K ,φ , and we have
G H,L ,K ,φ/K ∼= H , so |G H,L ,K ,φ| is divisible by |K ||H |. Because K ⊃ L p, this implies
that |G H,L ,K ,φ| is divisible by p p+1. Therefore, G H,L ,K ,φ contains a Sylow p-subgroup of
Sp � Sp, so G H,L ,K ,φ is transitive. Because G H,L ,K ,φ ≤ Sp � Sp, we know that G H,L ,K ,φ is
imprimitive.

(⇐) Because G is imprimitive, we may assume that G ≤ Sp � Sp. Then, because p p+1 |
|G|, we know that G contains a Sylow p-subgroup of Sp � Sp; assume, without loss of
generality, that G contains Zp � Zp. In particular, G admits a unique block system B,
consisting of p blocks of cardinality p.

Let H = G/B ≤ Sp, let K = fixG(B), and let L̂ be the smallest normal subgroup of G
that contains 1 � Zp. It is easy to see that L̂ = 1 � L ∼= L p, for some transitive, simple
subgroup L of Sp.
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The map g �→ g/B is a homomorphism from G onto H , with kernel K . Thus, there is
an isomorphism φ̂: H → G/K , given by h = φ̂(h)/B. Because 1 � L is normal in G, we
know that G ≤ H � NSp (L), so we may write φ̂(h) = h φ(h), with φ(h) ∈ (1 � NSp (L)p)/K .
Because φ̂ is a homomorphism, it is straightforward to verify that φ is a crossed
homomorphism.

The assumption that L is simple is not necessary in the definition of G H,L ,K ,φ , but this
restriction makes L unique (up to conjugacy). For a given group G, the corresponding
H, L , K , φ are not uniquely determined, but the following simple lemma describes how to
tell whether G H1,L1,K1,φ1 is equivalent to G H2,L2,K2,φ2 .

Definition 10 (cf. [9, Proposition 4.1]) Let H be a group, let A be an H -module, and let
φ1, φ2: H → A be crossed homomorphisms. We say that φ1 is cohomologous to φ2 if there
is an element a of A, such that, for every h ∈ H , we have

φ1(h) − φ2(h) = h−1a − a.

(This is equivalent to the assertion that the homomorphisms h �→ (h, φ1(h)) and h �→
(h, φ1(h)) are conjugate via an element of A.)

We remark that the equivalence classes of this equivalence relation are, by definition, the
elements of the cohomology group H 1(H, A).

Lemma 10 Let Hi , Li , Ki , φi be as in Proposition 1, for i = 1, 2.
1. If G H1,L1,K1,φ1 is equivalent to G H2,L2,K2,φ2 , then L1 is conjugate to L2 (in Sp).
2. If G H1,L1,K1,φ1 is equivalent to G H2,L2,K2,φ2 , and L1 = L2, then there exists g ∈ Sp, such

that, letting ĝ = (g, 1) ∈ Sp � Sp, we have
(A) gH1g−1 = H2;
(B) ĝK1ĝ−1 = K2; and
(C) φ

g
1 is cohomologous to φ2, where φ

g
1 : H2 → (NSp (L2)/L2)p is defined by φ

g
1 (h) =

ĝ φ1(g−1hg) ĝ−1.

Proof: Let h ∈ Sp2 , with hG H1,L1,K1,φ1 h−1 = G H2,L2,K2,φ2 , and let B be the unique com-
plete block system for Zp � Zp. Because Zp � Zp is contained in both G H1,L1,K1,φ1 and
G H2,L2,K2,φ2 , the uniqueness of B implies that hB = B; thus, h ∈ Sp � Sp, so we may write
h = (g, x), with g ∈ Sp and x ∈ (Sp)p. Because L1 = L2, we must have x ∈ NSp (L2)p.

Because NSp (L2)/L2 is abelian, this implies that x normalizes K2, so we must have
gK1g−1 = K2.

Because Hi = G Hi ,Li ,Ki ,φi /B, we must have gH1g−1 = H2.
Replacing G H1,L1,K1,φ1 by its conjugate under ĝ, we may assume that g = 1, so H1 = H2,

K1 = K2, and φ
g
1 = φ1. Because

x{(h, φ1(h)) : h ∈ H1}x−1 = xG H1,L1,K1,φ1 x−1

L1
= G H2,L2,K2,φ2

L2

= {(h, φ2(h)) : h ∈ H2},

we see that φ1 is cohomologous to φ2.
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5.1. Cyclic codes modulo n

The Chinese Remainder Theorem (Lemma 11) reduces the study of codes modulo n to
the case where n is a prime power. Assuming that p � n, the problem can often be further
reduced to the case where n is prime (see Lemma 12 and Remark 11). This reduced case is
considered in Lemma 13.

Lemma 11 (cf. [14, Theorem 1.2.13, p. 8]) Let n = n1n2 . . . nr , where each ni is a prime
power, and n1, n2, . . . , nr are pairwise relatively prime.
1. We have (Zn)p ∼= (Zn1 )p ⊕ (Zn2 )p ⊕ · · · ⊕ (Znr )p.
2. For any subgroup C of (Zn1 )p ⊕ (Zn2 )p ⊕ · · · ⊕ (Znr )p, we have

C = (
C ∩ (

Zn1

)p) ⊕ (
C ∩ (

Zn2

)p) ⊕ · · · ⊕ (
C ∩ (

Znr

)p)
.

Definition 11 If n = qt , where q is prime, and 0 ≤ i < t , we let φi : qi (Zn)p → (Zq )p be
the natural homomorphism with kernel qi+1(Zn)p.

Lemma 12 Let n = qt where q is prime, and p �= q, and let G be any transitive group
of degree p that contains Zp.
1. If C is any G-invariant subgroup of (Zn)p, define Ci = φi (C ∩ qi (Zn)p) for 0 ≤ i < t .

Then C0 ⊂ C1 ⊂ · · · ⊂ Ct−1 is an increasing chain of G-invariant subgroups of (Zq )p.
2. If G ≤ AGL(1, p), or G = An, or G = Sn, then the converse holds: For any increasing

chain C0 ⊂ C1 ⊂ · · · ⊂ Ct−1 ⊂ (Zq )p of G-invariant subgroups of (Zq )p, there is a
subgroup of (Zn)p, such that φi (C ∩ qi (Zn)p) = Ci , for 0 ≤ i < t .

3. Each G-invariant subgroup of (Zn)p is uniquely determined by the corresponding chain
C0 ⊂ C1 ⊂ · · · ⊂ Ct−1 of G-invariant subgroups of (Zq )p.

Proof: (1) This follows from the observation that, for any c ∈ C ∩ qi (Zn)p, we have
qc ∈ qi+1(Zn)p and φi (c) = φi+1(qc).

(3) Suppose there is a code C ′, such that C ′
i = Ci for each i . Let M = C ∩ q(Zn)p.

By induction on t , we may assume that C ′ ∩ q(Zn)p = M . Consider the composite
homomorphism:

C0
∼= C

M
↪→ C ′ + q(Zn)p

M
→ C ′ + q(Zn)p

C ′
∼= q(Zn)p

M
.

If C �= C ′, then this homomorphism is nontrivial, so C0 and q(Zn)p/M have a composition
factor in common. Because

M ⊂ M + qt−1(Zn)p ⊂ M + qt−2(Zn)p · · · ⊂ M + q(Zn)p

is an increasing chain of G-submodules with quotients

(Zq )p/Ct−1, (Zq )p/Ct−2, . . . , (Zq )p/C1,
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we conclude that C0 has a composition factor in common with (Zq )p/Ci , for some i ≥ 1.
This is impossible, because C0 ⊂ Ci , and the representation of G on (Zq )p is multiplicity
free. (In fact, the restriction to the subgroup Zp is multiplicity free, because there are
p distinct pth roots of unity in an appropriate extension of Fq .)

(2) It suffices to show, for each i , that there is a G-invariant subgroup Ĉi of (Zn)p, such
that Ĉ j = Ci for j ≤ i and Ĉ j = 0 for j > i . (For then we simply let C = 〈Ĉ0, . . . , Ĉt−1〉.)
Thus, we may assume that, for some i , we have C0 = C1 = · · · = Ci and Ci+1 = Ci+2 =
· · · = Ct−1 = 0. Furthermore, may assume that i = t − 1 (because C ′ = qkC satisfies
C ′

j = 0 for j ≥ t − k).
If Ci is the repetition code, let C be the repetition code in (Zn)p. If Ci is the dual of the

repetition code, then let C be the dual of the repetition code in (Zn)p; that is,

C =
{

(z1, . . . , z p) ∈ (Zn)p :
p∑

i=1

zi ≡ 0 (mod n)

}
.

Thus, we may now assume that Ci is neither the repetition code nor its dual. Then, from
Lemma 13 and the assumption on G, we see that G ≤ AGL(1, p). Therefore Zp � G, so,
from uniqueness (3), we see that every Zp-invariant subgroup of (Zn)p is G-invariant. Thus,
we may assume that G = Zp.

In this case, the desired conclusion is a special case of [7, Theorem 37.4, p. 156], but we
give an explicit construction. Let f (x) ∈ Fq [x] be the monic generating polynomial for Ci .
Because f (x) is a divisor of x p − 1, and x p − 1 has no repeated roots, we know, from
Hensel’s Lemma [7, 36.5, p. 145], that there is a monic polynomial g(x) ∈ Zn[x], such that
g(x) ≡ f (x) (mod q), deg(g) = deg( f ), and g is a divisor of x p − 1 in Zn[x]. Now let C
be the ideal of Zn[x]/(x p − 1) generated by g(x).

Remark In applying Lemma 12 to the study of subgroups of Sp2 , one is interested only
in the case where n is not prime and there is a subgroup L of Sp, such that n is a divisor
of |NSp (L)/L|. Note that 32 � 11 − 1, 22 � 23 − 1, and neither 11 nor 23 can be written
in the form (qd − 1)/(q − 1) for a prime-power q. Therefore, we see from Lemma 13
that if G = PSL(2, 11), M11, or M23, then, in the cases of interest, Ci must be either the
repetition code or its dual. Thus, the proof of Lemma 12 is valid in these cases. It is only
when PSL(d, q) ≤ G ≤ P�L(d, q) that the possible choices of K in Proposition 1(3) have
not yet been completely classified.

Lemma 13 ([3, 23, 29]) Let
• p and r be prime;
• G be a transitive subgroup of Sp that contains Zp, and
• C be a nontrivial cyclic code over Zr that admits G as a group of permutation automor-

phisms.
If C is neither the repetition code nor its dual, then either
1. Zp ≤ G ≤ AGL(1, p), and C is described in Lemma 14 below; or
2. G = PSL(2, 11), p = 11, r = 3, and C is either the (11, 6) ternary Golay code or its

dual; or
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3. G = M23, p = 23, r = 2, and C is either the (23, 12) binary Golay code or its dual; or
4. PSL(d, q) ≤ G ≤ P�L(d, q), p = (qd − 1)/(q − 1), q is a power of r, and C is

described in Theorem 12 below.

Proof: From Theorem 2, we know that there are only a few possibilities for G. In each
case, the desired conclusion is a known result.

• If Zp ≤ G ≤ AGL(1, p), see Lemma 14.
• If G = Ap (or Sp), see [23, Beispiele 9(a)].
• If G = PSL(2, 11) and p = 11, see [29, (J)].
• If G = M11 or M23 (and p = 11 or 23, respectively), see [23, Beispiele 9(bc)].
• Suppose PSL(d, q) ≤ G ≤ P�L(d, q) and p = (qd − 1)/(q − 1). If r � q, see [29,

Section 3(C)]; if r | q , see Theorem 12.

5.1.1. Cyclic codes invariant under a given subgroup of AGL(1, p). Lemma 14 char-
acterizes the cyclic codes of prime length p that admit a given subgroup of AGL(1, p) as
permutation automorphisms. This result must be well known, but the authors have been
unable to locate it in the literature.

Lemma 14 Let f (x) ∈ Fq [x] be the generating polynomial of a cyclic code C of prime
length p over Fq , and let A be a subgroup of Z∗

p.
1. If p � q, then C is A-invariant if and only if f (x) is a factor of f (xa), for every a ∈ A.
2. If p | q, then C is A-invariant.

Remark Suppose p � q . For a given subgroup A of Z∗
p, one can construct all of the

A-invariant cyclic codes of length p by the following method.
Let P ⊂ Fq [x] be the set of all monic factors of the polynomial x p − 1, and let Pirr be

the subset consisting of those polynomials that are irreducible over Fq . Then A acts on both
P and Pirr by

f a(x) = gcd( f (xa), x p − 1).

From the lemma, we see that f (x) is the generating polynomial of an A-invariant code if
and only if f a = f , for every a ∈ A.

If F is any A-invariant subset F of Pirr (that is, if F is any union of orbits of A), then∏
f ∈F f (x) is the generating polynomial of an A-invariant code, and conversely, every

A-invariant generating polynomial can be constructed in this way.
In particular, the number of A-invariant cyclic codes is 2d , where d is the number of

A-orbits on Pirr. However, it is probably easier to calculate d by using the formula d =
1 + |Z∗

p : 〈A, q〉|.

5.1.2. Codes that admit PSL(d, q). Bardoe and Sin [3, Theorem A] recently gave an
explicit description of the codes that admit PGL(d, q) as a group of permutation automor-
phisms. (They [3, Theorem C] also considered monomial automorphisms, but we do not
need the more general result.) For the case of interest to us, where (qd −1)/(q −1) is prime,
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we know that gcd(q − 1, d) = 1, so the natural embedding of PSL(d, q) into PGL(d, q) is
an isomorphism. Therefore, the codes described in [3] are precisely the codes that admit
PSL(d, q) as a group of permutations.

Furthermore, the results of Bardoe and Sin yield an explicit description of the image
of each code under the Frobenius automorphism (cf. [3, Theorem A(b)]), so the results
generalize easily to any subgroup G of P�L(d, q) that contains PSL(d, q). After some
necessary definitions, we state this slightly more general version of [3, Theorem A].

Definition 12 Suppose r is a prime number, q = r t , and p = (qd − 1)/(q − 1) is prime.
Let c be a divisor of t .

Let H(c) denote the set of t-tuples (s0, s1, . . . , st−1) of integers satisfying (for j =
0, 1, . . . , t − 1, and with subscripts read modulo t):

1. 1 ≤ s j ≤ d − 1;
2. 0 ≤ rs j+1 − s j ≤ (r − 1)d; and
3. s j+c = s j .

Let H(c) be partially ordered in the natural way: (s ′
0, . . . , s ′

t−1) ≤ (s0, . . . , st−1) if and only
if s ′

j ≤ s j for all j .

Let H(c)
0 = H(c) ∪{(0, 0, . . . , 0)}, and extend the partial order on H(c) to H(c)

0 , by making
(0, 0, . . . , 0) incomparable to all other elements.

Definition 13 A monomial X = ∏d
i=1 Xbi

i ∈ Zr [X1, X2, . . . , Xd ] is a basis monomial if

• 0 ≤ bi < q , for i = 1, . . . , d;
• deg(X ) = ∑d

i=1 bi is divisible by q − 1; and
• X �= Xq−1

1 Xq−1
2 . . . Xq−1

d .

Definition 14 ([3, Section 3.2]) Let X = ∏d
i=1 Xbi

i be a basis monomial. For each
e ∈ {0, 1, . . . , t − 1}, let

dege(X ) =
d∑

i=1

φe(bi ),

where φ is the permutation on {0, 1, . . . , q − 1} defined by φ(k) = rk + (1 − q) rk/q!.
(In other words, if we write k = ∑t−1

j=0 a jr j as a t-digit number in base r , then φ(k) =
at−1 + ∑t−1

j=1 a j−1r j is the t-digit number obtained by rotating the t digits of k, including
the leading 0’s.)

Define

s(X ) = 1

q − 1
(deg0(X ), deg1(X ), . . . , degt−1(X )).

Then s(X ) ∈H(t)
0 .
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Definition 15 Any basis monomial X defines an Fq -valued function fX on the vector
space Fd

q . Because deg(X ) is divisible by q − 1, we have fX (v) = fx (λv), for every
λ ∈ F∗

q and v ∈ Fd
q , so fX factors through to a well-defined function f̄ X on the projective

space Pd−1(Fq ).

Theorem 12 (Bardoe-Sin [3]) Suppose r is a prime number, q = r t , p = (qd −1)/(q −1)
is prime, and PSL(d, q) ≤ G ≤ P�L(d, q). Let c = | P�L(d, q) : G|.

For any ideal I of the partially ordered set H(c)
0 , let MI ⊂ Zr [Pd−1(Fq )] be the span

over Zr of the functions f̄ X , for all basis monomials X, such that s(X ) ∈ I. Then MI is
G-invariant.

Conversely, for each G-invariant subspace M, there is a unique ideal I of H(c)
0 , such

that M = MI .

5.2. Crossed homomorphisms

Theorem 13 Let
• p be a prime;
• H be either Ap, Sp, or subgroup of AGL(1, p) that contains Zp;
• n be a natural number, such that either n = 2 or n | p − 1 or n | m, where m satisfies

p = (rdm − 1)/(rd − 1) for some prime r and natural number d;
• K be an H-invariant subgroup of (Zn)p; and
• φ: H → (Zn)p/K be a crossed homomorphism.
Then φ is cohomologous to a homomorphism from H to C0/(K ∩ C0), where C0 is the
repetition code in (Zn)p.

Remark The conclusion of the theorem can be stated more concretely: If φ is not coho-
mologous to 0, then either

1. H ≤ AGL(1, p), and there is some c ∈ Zn , and some generator h of H/Zp, such
that |h|(c, c, . . . , c) ∈ K and, after replacing φ by a cohomologous cocycle, we have
φ(ha, z) = a(c, c, . . . , c), for a ∈ Z and z ∈ Zp; or

2. H = Sp, n is even, and there is some c ∈ Zn , such that (2c, 2c, . . . , 2c) ∈ K and, after
replacing φ by a cohomologous cocycle, we have

φ(h) =
{

0 + K if g ∈ Ap

(c, c, . . . , c) + K if g /∈ Ap

Proof: Let V = (Zn)p/K , let, and let C⊥
0 be its dual.

Because gcd(p, n) = 1, we know that every element of CV (Zp) has a representative in
C(Zn )p (Zp) (cf. [14, Theorem 5.2.3, p. 177]). Therefore

CV (H ) ⊂ CV (Zp) = C(Zn )p (Zp) + K

K
= C0 + K

K
∼= C0

K ∩ C0
.
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Thus, it suffices to show that, after replacing φ by a cohomologous crossed homomorphism,
we have φ(H ) ⊂ CV (Zp).

Case 1 Assume H ≤ AGL(1, p). Because gcd(p, n) = 1, we know that H 1(Zp, V ) = 0
[9, Corollary 12.2.7, p. 237]. Therefore, replacing φ by a cohomologous cocycle, we may
assume that φ(Zp) = 0. Because φ is a crossed homomorphism, this implies that φ(H ) ⊂
CV (Zp).

Case 2 Assume H = Ap. Assume that n is prime. From Lemma 13, we know that (Zn)p/K
is either C0 or C⊥

0 . Because Ap is perfect (or p = 3, in which case Ap = Zp), we know
that H 1(Ap, C0) = 0. From [24, Lemma 1], we know that H 1(Ap, C⊥

0 ) = 0.

Let m be a divisor of n, such that n/m is prime. By induction on n, we may assume that
φ is cohomologous to a crossed homomorphism into mV . Then the preceding paragraph
implies that φ is cohomologous to 0.

Case 3 Assume H = Sp. From Case 2, we may assume, after replacing φ by a cohomol-
ogous crossed homomorphism, that φ(Ap) = 0. Therefore, φ(Sp) ⊂ CV (Ap) = CV (Zp).

Remark To complete the classification of transitive subgroups of Sp2 , the following prob-
lems remain:

• For PSL(d, q) ≤ G ≤ P�L(d, q), extend the Bardoe-Sin Theorem 12 from a classifica-
tion of subgroups modulo a prime to a classification modulo a prime-power.

• Calculate H 1(H, V ) for H = PSL(2, 11) (with p = 11), M11, M23 and PSL(d, q).
• For each nontrivial cohomology class, find an explicit crossed homomorphism to repre-

sent it.

6. Applications

6.1. The Cayley isomorphism problem

Let H be a set, and E ⊆ 2H ∪ 22H ∪ . . .. We say that the ordered pair X = (H, E) is
a combinatorial object. We call H the vertex set and E the edge set. If E ⊆ 2H , then
X is a hypergraph. An isomorphism between two combinatorial objects X = (H, E) and
Y = (H ′, E ′) is a bijection δ: H → H ′ such that δ(E) = E ′. An automorphism of a
combinatorial object X is an isomorphism from X to itself. Let G be a group and X = (G, E)
a combinatorial object. Define gL : G → G by gL (h) = gh and let GL = 〈gL : g ∈ G〉. Then
X is a Cayley object of G if and only if GL ≤ Aut(X ). A Cayley object X of G is a
CI-object of G if and only if whenever X ′ is a Cayley object of G isomorphic to X , then
some α ∈ Aut(G) is an isomorphism from X to X ′. Similarly, G is a CI-group with respect
to K if and only if every Cayley object in the class of combinatorial objects K is a CI-object
of G, and a CI-group if G is a CI-group with respect to every class K of combinatorial
objects. It is known [31] that G is a CI-group if and only if |G| = 4 or G ∼= Zn , with
gcd(n, ϕ(n)) = 1. Hence neither Zp2 nor Z2

p is a CI-group unless p = 2, although Z2
p is a
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CI-group with respect to graphs [13]. We begin with a characterization of when two Cayley
objects of a p-group G can be isomorphic provided their automorphism groups share a
common Sylow p-subgroup.

Lemma 15 Let X and Y be Cayley objects of a p-group G, and P a Sylow p-subgroup of
both Aut(X ) and Aut(Y ). Then X and Y are isomorphic if and only if there exists δ ∈ NSG (P)
such that δ(X ) = Y .

Proof: (⇒) Let ω: X → Y be an isomorphism. Then ω−1 Pω ⊂ Aut(X ), and ω−1 Pω ≤
P1, a Sylow p-subgroup of Aut(X ). Hence there exists β ∈ Aut(X ) such that β−1 P1β = P ,
so that β−1ω−1 Pωβ ≤ P , which means ωβ ∈ NSG (P). Furthermore, ωβ: X → Y is an
isomorphism.

Corollary 1 Let X and Y be Cayley objects of Zp2 , such that Pi is a Sylow p-subgroup
of both Aut(X ) and Aut(Y ), for some 2 ≤ i ≤ p − 1. Let β ∈ F∗

p such that |β| = p − 1.

Then X and Y are isomorphic if and only of they are isomorphic by α = β̂ jγ k
i+1, for some

1 ≤ j ≤ p − 1 and 1 ≤ k ≤ p.

Proof: (⇒) From Lemmas 15 and 5, we know that X and Y are isomorphic if and only
if they are isomorphic by some δ ∈ NSp2 (Pi ) = 〈NSp2 (〈τ 〉), γi+1〉. As Pi � NSp2 (Pi ) and

|NSp2 (Pi )/Pi | = (p − 1)p, there are (p − 1)p cosets of Pi in NSp2 (Pi ). As β̂, γi+1 �∈ Pi ,

these (p − 1)p cosets are Piβ
jγ k

i+1, 1 ≤ j ≤ p − 1 and 1 ≤ k ≤ p. Hence δ may be
written in the form δ = gα, with g ∈ Pi and α = β̂ jγ k

i+1. Then α ∈ NSp2 (Pi ) and, because
δ(X ) = Y and g ∈ Aut(Y ), we have α(X ) = Y .

Corollary 2 Let X and Y be Cayley objects of Z2
p with �1 a Sylow p-subgroup of Aut(X )

and �2 a Sylow p-subgroup of Y . Let α1 ∈ Aut(Z2
p) such that α1�1α

−1
1 = P ′

i and α2 ∈
Aut(Z2

p) such that α2�2α
−1
2 = P ′

i , 1 ≤ i ≤ p − 1. Let β ∈ F∗
p such that |β| = p − 1.

Then X and Y are isomorphic if and only if they are isomorphic by α1β̄
j β̃kγ �

i+1α
−1
2 , 1 ≤ j,

k ≤ p − 1, 1 ≤ � ≤ p.

Proof: Note that Pi is a Sylow p-subgroup of both Aut(α1(X )) and Aut(α2(Y )). It follows
then by arguments analogous to those in Corollary 1 that α1(X ) and α2(Y ) are isomorphic
if and only if they are isomorphic by some ω ∈ NSp2 (P ′

i ). The result follows.

We remark that the case P = P ′
2 was considered in [4].

6.2. Automorphism groups of Cayley graphs of Z2
p

Using Theorem 4 we can calculate the full automorphism group of any vertex-transitive
graph of order p2. We actually will prove this result in slightly more generality, determining
all 2-closed groups G that contain a regular subgroup isomorphic to Z2

p (as was done in the
previously cited paper). We remark that Klin and Pöschel [25] have already calculated the
full automorphism groups of circulant graphs of order pk (that is, of Cayley graphs of Zpk ).
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Theorem 14 Let G be a 2-closed subgroup of Sp2 such that G contains the left regular
representation of Z2

p.
1. If G is doubly transitive, then G = Sp2 .
2. If G is simply primitive and solvable, then G ≤ AGL(2, p).
3. If G is simply primitive and nonsolvable, then G ≤ AGL(2, p) or G = S2 � Sp in its

product action.
4. If G is imprimitive, solvable, and has elementary abelian Sylow p-subgroup, then either

G < AGL(1, p) × AGL(1, p) or G = S3 × S3 (and p = 3).
5. If G is imprimitive, nonsolvable, and has elementary abelian Sylow p-subgroup, then

either G = Sp × Sp or G = Sp × A, where A < AGL(1, p).
6. If G is imprimitive with Sylow p-subgroup of order at least p3, then G = G1 �G2, where

G1 and G2 are 2-closed permutation groups of degree p.

Proof: (1) If G is doubly transitive, then clearly G = Sp2 .
(5) If G is imprimitive, nonsolvable, and has elementary abelian Sylow p-subgroup, then

by Theorem 4, we have that G = {(σ, τ ) ∈ H × NSp (K ) : f (σ ) ∈ τ K }, where K , H ≤ Sp

and f : H → NSp (K )/K is a group homomorphism.
Let τ1 ∈ H be a p-cycle and τ2 ∈ K be a p-cycle. Then (τ1, 1Sp ) ∈ G and (1Sp , τ2) ∈ G.

Furthermore, G admits complete block systems B1 and B2 of p blocks of cardinality p
formed by the orbits of 〈(τ1, 1Sp ))〉 and 〈(1Sp , τ2)〉, respectively (because G ≤ Sp × Sp).

If both fixG(B1) = {(δ, 1Sp ) : δ ∈ Ker( f )} and fixG(B2) = {(1Sp ), γ ) : γ ∈ K } are
solvable, then fixG(B1) ≤ AGL(1, p) and fixG(B2) ≤ AGL(1, p). Then K ≤ AGL(1, p)
and NSp (K ) = AGL(1, p) is solvable. Hence both Ker( f ) and f (H ) are solvable so that H
is solvable. Thus G is solvable, a contradiction.

We now know that either fixG(B1) or fixG(B2) is nonsolvable. We will show that if
fixG(B2) is doubly transitive (which includes the nonsolvable case), then G = H × Sp. The
case where fixG(B1) is nonsolvable is handled in a similar fashion.

If fixG(B2) is nonsolvable, then by Theorem 1 fixG(B2)|B is doubly transitive for every
B ∈B2. Hence StabfixG (B2)(i, j) �= 1 for every (i, j) ∈ Z2

p. Define an equivalence relation ≡
on Z2

p by (i, j) ≡ (k, �) if and only if StabfixG (B2)(i, j) = StabfixG (B2)(k, �). As G ≤ Sp × Sp,
there are p equivalence classes of ≡ and each equivalence class of ≡ contains exactly one
element from each block of B2. As fixG(B2)|B is doubly transitive, StabfixG (B2)(i, j)|B has
two orbits for every B ∈B2. One orbit consists of {(k, �)}, where (k, �) ≡ (i, j) and the
other consisting of the remaining elements of the block B ′ of B2 that contains (k, �). Let �

be an orbital digraph of G with ((i, j), (k, �)) ∈ E(�). If i = k, then � = pK p (the union
of p disjoint copies of K p) and so Aut(�) = Sp � Sp. If i �= j , then, as � is an orbital
digraph, either (i, j) is only adjacent to (k, �) or (i, j) is adjacent to every element of B ′

except (k, �). In either case, it is straightforward to verify that {(1Sp , γ ) : γ ∈ Sp} ≤ Aut(�).
As G is the intersection of the automorphism group of all orbital digraphs of G, we have
K = Sp, NSp (K ) = Sp and f = 1. Thus G = H × K = H × Sp as required. Thus either
H < AGL(1, p) or H is doubly transitive (as AGL(1, p) is doubly transitive). Analogous
arguments will then show that if H is doubly transitive, then H = Sp. Thus (5) follows.

(4) If G is imprimitive, solvable, and has elementary abelian Sylow p-subgroup, then
we may define H , K , and f as in Theorem 4. Both H and NSp (K ) are solvable, so that
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K is solvable and, by Theorem 1, we have H, K ≤ AGL(1, p). As NSp (AGL(1, p)) =
AGL(1, p), we have that G ≤ AGL(1, p) × AGL(1, p). As AGL(1, p) is itself doubly
transitive, if G = AGL(1, p) × AGL(1, p) then fixG(B)|B is doubly transitive for every
complete block system B of G and every block B ∈B. It then follows by arguments above
that fixG(B) ∼= Sp, a contradiction unless p = 3. If p = 3, then AGL(1, p) × AGL(1, p) =
S3 × S3, a group listed in (4). Thus (4) follows.

(2, 3) If G is simply primitive, then by Theorem 4, G has an elementary abelian Sylow
p-subgroup and either G ≤ AGL(2, p) or G contains an imprimitive subgroup H of index
2. If G ≤ AGL(2, p), then the result follows, so we may assume G contains an imprimitive
subgroup H of index 2. Note that G is solvable if and only if H is solvable.

If H is solvable, then H has an elementary abelian Sylow p-subgroup, and so G has an ele-
mentary abelian Sylow p-subgroup. Furthermore, G is solvable. Let N be a minimal normal
subgroup of G. Then N is an elementary abelian q-group for some prime q. As G is primitive,
N is transitive, q = p and |N | = p2. Thus G ≤ NSZp×Zp

(N ) ≤ AGL(2, p) and (2) follows.
If H is nonsolvable, then by (5) proven above and the fact that if H ≤ G, then cl(H ) ≤

cl(G), we have that either H = Sp × Sp or H = A × Sp, with A < AGL(1, p). It then
follows by [10, Theorem 4.6A] that G = S2 � Sp with the product action. Thus (3) follows.

(6) If G has a Sylow p-subgroup P of order at least p3, then P admits a complete block
system B of p blocks of cardinality p. Then |fixP (B)| ≥ p2 so that StabfixP (B)(0, 0) �= 1.
As fixP (B) is a p-group, we have that if γ ∈ StabfixP (B)(0, 0), then γ fixes every point of the
block of B that contains (0, 0). Define an equivalence relation ≡′ on Z2

p by (i, j) ≡′ (k, �)
if and only if StabfixP (B)(i, j) = StabfixP (B)(k, �). It follows by comments above and the fact
that StabfixP (B)(i, j) = StabP (0, 0), that the cardinality of each equivalence class of ≡′ is a
multiple of p. It is straightforward to verify that the equivalence classes of ≡′ are blocks
of P so that each equivalence class of ≡′ has order p. Thus the equivalence classes of ≡′

form the complete block system B. For convenience, we assume without loss of generality
that B = {{(i, j) : j ∈ Zp} : i ∈ Zp}.

Let � be an orbital digraph of G, with P ′ a Sylow p-subgroup of Aut(�) that contains
P . Then P ′ admits B as a complete block system as well. If � is disconnected, then
� = p�2, where p�2 is the disjoint union of p copies of the directed graph �2 so that
Aut(�) = Sp � Aut(�2). If � is connected, let

(
(i, j), (k, �)

) ∈ E(�) such that i �= k. Then
(i, j) �≡′ (k, �) so that there exists γ ∈ P such that γ (i, j) = (i, j) but γ (k, �) �= (k, �).
Then γ permutes the p elements of {(k, m) : m ∈ Zp} as a p-cycle. We conclude that(
(i, j), (k, m)

) ∈ E(�) for every m ∈ Zp. As fixP (B)|B is semiregular, where B ∈ B such
that (i, j) ∈ B, we have that

(
(i, n), (k, m)

) ∈ E(�) for every n, m ∈ Zp. Thus � = �1 � �2

where �1 and �2 are digraphs of order p. It follows by [32, Theorem 1] that Aut(�) =
Aut(�1) � Aut(�2) (although the cited theorem is stated only for graphs, it works as well for
digraphs). As cl(G) is the intersection of the automorphism groups of all orbital digraphs
of G, we conclude that G = G1 � G2 for 2-closed groups G1, G2 of degree p. Thus (6)
holds.

Theorem 15 Let G be a 2-closed subgroup of Sp2 that contains the left regular represen-
tation of Zp2 . Then one of the following is true:
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1. G = Sp2 ,

2. G ≤ NSp2 ((Zp2 )L ),
3. G = G1 � G2, where G1 and G2 are 2-closed groups of degree p.

Proof: If G is doubly transitive, then G = Sp2 . Otherwise, as Zp2 is a Burnside group
[33, Theorem 25.3], G is imprimitive. By Theorem 4, either a Sylow p-subgroup of G is
normal in G, or a Sylow p-subgroup is isomorphic to Zp �Zp. By arguments in Theorem 14,
if a Sylow p-subgroup of G has order at least p3, then G = G1 � G2, where G1 and G2 are
2-closed groups of degree p. The result then follows.

Definition 16 A Cayley digraph � of a group G is normal if the left regular representation
of G is normal in Aut(�).

In [35, Problem 3], Ming-Yao Xu posed the problem of determining all nonnormal Cayley
graphs of order p2. We are now in a position to solve this problem.

Corollary 3 A Cayley digraph � of a group of order p2 is nonnormal if and only if � is
isomorphic to one of the following graphs.
1. � = K p2 , p ≥ 3, or p = 2 and G = Z4,

2. � = �1 ��2, where �1 and �2 are Cayley digraphs of the cyclic group of order p, p ≥ 3,

3. � is a Cayley digraph of Z2
p but not Zp2 , p ≥ 5, with connection set S = {(i, 0), (0, j) :

i, j ∈ Zp} or the complement of this graph,

4. � is a Cayley digraph of Z2
p but not Zp2 , p ≥ 5, whose connection set S satisfies the

following properties, where H = {(0, i) : i ∈ Zp},
(A) H ∩ S = ∅ or H ∩ S = H − {(0, 0)},
(B) for every coset (a, 0) + H �= H of H, ((a, 0) + H ) ∩ S = (a, b) + H, ∅, {(a, 0)},

or ((a, 0) + H ) − {(a, 0)}.
Proof: Let G = Aut(�). Then � is normal if (2), (4) of Theorem 14 hold or (2) of
Theorem 15 hold.

If either (1) of Theorem 14 or (1) of Theorem 15 holds, then Aut(�) = Sp2 and � is
not normal unless p = 2, in which case the left regular representation of Z2

2 is a normal
subgroup of S4 but the left regular representation of Z4 is not a normal subgroup of S4 and
(1) follows.

If (6) of Theorem 14 or (3) of 15 holds, then � = �1 � �2 where �1 and �2 are Cayley
digraphs of Zp. It is then straightforward to verify, as Aut(�) = Aut(�1) � Aut(�2) that left
regular representations of Zp2 and Z2

p are not normal in Aut(�) unless p = 2. Whence (2)
holds. We conclude that the remaining nonnormal Cayley digraphs must be Cayley digraphs
of Z2

p but not Zp2 .
If (3) of Theorem 14 holds, then (3) follows by [35, Theorem 2.12].
Finally, if (5) of Theorem 14 holds, � will be nonnormal provided that p ≥ 5. Further,

Aut(�) admits a complete block systemB of p blocks of cardinality p, which we may assume
(by replacing � with its image under an appropriate automorphism of Z2

p) that B is formed
by the orbits of HL and that fixAut(�)(B)|B = Sp for every B ∈B. As fixAut(�)(B)|B = Sp, we
have that �[H ] = K p or K̄ p, the complete graph on p vertices or its complement. Whence
H ∩ S = ∅ or H ∩ S = H − {(0, 0)}. Define an equivalence relation ≡ on Z2

p by (i, j) ≡



68 DOBSON AND WITTE

(k, �) if and only if StabfixAut(�)(B)(i, j) = StabfixAut(�)(B)(k, �). It is then straightforward to
verify that there are p equivalence classes of ≡ and that these p equivalence classes of ≡
form a complete block system C of Aut(�). Again, if necessary, we replace � with its image
under an appropriate automorphism of Z2

p and assume that B is formed by the orbits of HL

and C = {{(i, j) : i ∈ Zp} : j ∈ Zp}. Let a ∈ Z∗
p. Then (0, 0) is adjacent to either: no vertex

of (a, 0) + H ; every vertex of (a, 0) + H ; only the vertex of (a, 0) of (a, 0) + H ; or every
vertex of (a, 0) + H except (a, 0). Thus (4) follows.

The converse is straightforward.
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25. M.Ch. Klin and R. Pöschel, “The isomorphism problem for circulant graphs with pn vertices,” Preprint

P-34/80 ZIMM, Berlin, 1980.
26. W. Knapp and P. Schmid, “Codes with prescribed permutation group,” J Algebra 67 (1980), 415–435.
27. F.J. MacWilliams and M.J.A. Sloane, The Theory of Error Correcting Codes, North-Holland, New York,

1977.
28. D. Marus̆ic̆ and R. Scapellato, “Characterizing vertex transitive pq-graphs with imprimitive automorphism

group,” J. Graph Theory 16 (1992), 375–387.
29. B. Mortimer, “The modular permutation representations of the known doubly transitive groups,” Proc. London

Math. Soc. 41(3) (1980), 1–20.
30. O. Ore, “Contributions to the theory of groups of finite orders,” Duke Math. J. 5 (1954), 431–460.
31. P.P. Pálfy, “Isomorphism problem for relational structures with a cyclic automorphism,” Europ. J. Comb. 8

(1987), 35–43.
32. G. Sabidussi, “The lexicographic product of graphs,” Duke Math. J. 28 (1961), 573–578.
33. H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
34. H. Wielandt, Permutation Groups Through Invariant Relations and Invariant Functions, Lecture Notes, Ohio

State University, 1969.
35. M.Y. Xu, “Automorphism groups and isomorphisms of Cayley digraphs,” Discrete Math. 182 (1998), 309–319.


