ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

A Weighted Enumeration of Maximal Chains in the Bruhat Order

John R. Stembridge

DOI: 10.1023/A:1015068609503

Abstract

Given a finite Weyl group W with root system PHgr, assign the weight agr isin PHgr to each covering pair in the Bruhat order related by the reflection corresponding to agr. Extending this multiplicatively to chains, we prove that the sum of the weights of all maximal chains in the Bruhat order has an explicit product formula, and prove a similar result for a weighted sum over maximal chains in the Bruhat ordering of any parabolic quotient of W. Several variations and open problems are discussed.

Pages: 291–301

Keywords: Bruhat order; Weyl group; root system

Full Text: PDF

References

1. N. Bourbaki, Groupes et Alg`ebres de Lie, Chp. IV-VI, Masson, Paris, 1981.
2. J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin, 1972.
3. J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
4. V. Lakshmibai and C.S. Seshadri, Standard monomial theory, in Proceedings of the Hyderabad Conference on Algebraic Groups, pp. 279-322, Manoj Prakashan, Madras, 1991.
5. P. Littelmann, “A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras,” Invent. Math. 116 (1994), 329-346.
6. I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford, 1995.
7. R.A. Proctor, “Bruhat lattices, plane partition generating functions, and minuscule representations,” Europ. J. Combin. 5 (1984), 331-350.
8. R.A. Proctor, “Minuscule elements of Weyl groups, the numbers game, and d-complete posets,” J. Algebra 213 (1999), 272-303.
9. J.R. Stembridge, “Minuscule elements of Weyl groups,” J. Algebra 235 (2001), 722-743.
10. J.R. Stembridge, “Combinatorial models for Weyl characters,” Adv. Math., to appear.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition