Multiplicities of Points on Schubert Varieties in Grassmannians
Joachim Rosenthal
and Andrei Zelevinsky
DOI: 10.1023/A:1011253800374
Abstract
We obtain an explicit determinantal formula for the multiplicity of any point on a classical Schubert variety.
Pages: 213–218
Keywords: Schubert varieties; singularities; multiplicities; partial difference equation
Full Text: PDF
References
1. I. Gessel and G.X. Viennot, “Binomial determinants, paths, and hooklength formulae,” Adv. Math. 58 (1985), 300-321.
2. V. Lakshmibai, “Multiplicities of points on a Schubert variety,” C. R. Acad. Sci. Paris Sér. I Math. 321(2), (1995), 215-218.
3. V. Lakshmibai and J. Weyman, “Multiplicities of points on a Schubert variety in a minuscule G/P,” Adv. Math. 84 (1990), 179-208.
4. I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Clarendon Press, Oxford, 1995.
5. J. Rosenthal, “Schubertvariet\ddot aten und deren Singularit\ddot aten,” Diplom Thesis, University of Basel, Switzerland, 1986.
2. V. Lakshmibai, “Multiplicities of points on a Schubert variety,” C. R. Acad. Sci. Paris Sér. I Math. 321(2), (1995), 215-218.
3. V. Lakshmibai and J. Weyman, “Multiplicities of points on a Schubert variety in a minuscule G/P,” Adv. Math. 84 (1990), 179-208.
4. I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Clarendon Press, Oxford, 1995.
5. J. Rosenthal, “Schubertvariet\ddot aten und deren Singularit\ddot aten,” Diplom Thesis, University of Basel, Switzerland, 1986.