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Abstract. We obtain an explicit determinantal formula for the multiplicity of any point on a classical Schubert
variety.
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1. Main result

An important invariant of a singular point on an algebraic varietyX is its multiplicity: the
normalized leading coefficient of the Hilbert polynomial of the local ring. The main result
of the present note is an explicit determinantal formula for the multiplicities of points on
Schubert varieties in Grassmannians. This is a simplification of a formula obtained in [5].
More recently, the recurrence relations for multiplicities of points on more general (partial)
flag varieties were obtained in [2, 3]. However, to the best of our knowledge the case of
Grassmannians remains the only case for which an explicit formula for multiplicities is
available.

Fix positive integersd andn with 0≤ d ≤ n, and consider the GrassmannianGrd(V) of
d-dimensional subspaces in an-dimensional vector spaceV (over an algebraically closed
field of arbitrary characteristic). Recall that Schubert varieties inGrd(V) are parameterized
by the setId,n of integer vectorsi = (i1, . . . , i d) such that 1≤ i1 < · · · < i d ≤ n. For a
given complete flag{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V , the Schubert varietyXi is defined as
follows:

Xi :=
{

W ∈ Grd(V)
∣∣∣dim

(
W
⋂

Vik

)
≥ k for k = 1, . . . ,d

}
.

The Schubert cellX0
i is an open subset inXi given by

X0
i :=

{
W ∈ Xi

∣∣∣dim
(

W
⋂

Vik−1

)
= k− 1 for k = 1, . . . ,d

}
.

∗The authors were partially supported by NSF grants DMS-9610389 and DMS-9625511.



214 ROSENTHAL AND ZELEVINSKY

It is well known that the Schubert varietyXi is the disjoint union of Schubert cellsX0
j for

all j ≤ i in the componentwise partial order onId,n. The multiplicity of a pointx in Xi is
constant on each Schubert cellX0

j ⊂ Xi , and we denote this multiplicity byMj (i).
Our main result is the following explicit formula forMj (i) (where the binomial coeffi-

cients( a
b ) are subject to the condition that( a

b ) = 0 for b < 0):

Theorem 1 The multiplicity Mj (i) of a point x∈ X0
j ⊂ Xi is given by

Mj (i) = (−1)s1+···+sd det



( i1

−s1

)
. . . . . .

( i d

−sd

)
( i1

1− s1

)
. . . . . .

( i d

1− sd

)
...

...( i1

d − 1− s1

)
. . . . . .

( i d

d − 1− s1

)


, (1)

where

sq := #{ j p | iq < j p}. (2)

The proof of Theorem 1 will be given in the next section. Although determinants of
matrices formed by binomial coefficients were extensively studied by combinatorialists
(see, e.g., [1]), the experts whom we consulted did not recognize the determinant in (1).

We conclude this section by an example illustrating Theorem 1.

Example 2 Assume the indicesi, j satisfy jd ≤ i1. In this situation the numberss1, . . . , sd

attain the smallest possible value:s1 = · · · = sd = 0. Then the(p,q)-entry of the deter-
minant in (1) has the formPp(iq), wherePp(t) is a polynomial with the leading term
t p−1/(p− 1)!. It follows that

Mj (i) = 1

1! · · · (d − 1)!
V(i) = 1

1! · · · (d − 1)!

∏
p>q

(i p − iq), (3)

whereV(i) is the Vandermonde determinant det((i p−1
q )).

2. Proof of Theorem 1

Fix two vectorsj ≤ i from Id,n, and let

deg( j , i) := d − #{iq | iq ∈ { j1, . . . , jd}}.
For a nonnegative integer vectors= (s1, . . . , sd), we set

|s| := s1+ · · · + sd.
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As shown in [5] and [3, page 202], the multiplicityMj (i) satisfies the initial condition
Mj ( j) = 1 and the partial difference equation

Mj (i) = 1

deg( j , i)

∑
k

Mj (k), (4)

where the sum is over allk ∈ Id,n such thatj ≤ k < i, and|k| = |i| − 1.
To prove (1), we proceed by induction on|i|. The initial step is to verify (1) fori = j .

In this case the numberss1, . . . , sd attain their maximum possible value:sq = d − q. It
follows that

(−1)|s|det


0 . . . 0 1
... 1 ∗
0 . .

.

. .
. ...

1 ∗ . . . ∗

 = 1 = Mj(j), (5)

as required.
For the inductive step, we introduce some notation. To any nonnegative integer vector

s= (s1, . . . , sd) we associate a polynomialPs(t) ∈ Q[t] = Q[t1, . . . , td] defined by

Ps(t) = (−1)|s| det



( t1
−s1

)
. . . . . .

( td
−sd

)
( t1
1− s1

)
. . . . . .

( td
1− sd

)
...

...( t1
d − 1− s1

)
. . . . . .

( td
d − 1− sd

)


; (6)

here(ts) is the polynomialt (t − 1) · · · (t − s+ 1)/s! for s ≥ 0, and(ts) = 0 for s< 0. Thus
our goal is to show thatMj (i) = Ps(i) with s given by (2).

Forq = 1, . . . ,d, let1q : Q[t] → Q[t] denote the partial difference operator1q P(t) =
P(t)− P(t − eq), wheree1, . . . ,ed are the unit vectors inQd. Here is the key lemma.

Lemma 3 For any nonnegative integer vectors, the corresponding polynomial Ps(t)
satisfies the partial difference equation

(11+ · · · +1d)P = 0. (7)

Proof: First notice that the Vandermonde determinantV(t) = ∏
p>q(tp − tq) satisfies

(7) since it is a non-zero skew-symmetric polynomial of minimal possible degree, and the
operator11 + · · · + 1d preserves the space of skew-symmetric polynomials. The vector
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space of solutions of (7) is also invariant under translationst 7→ t + k so it is enough to
show that eachPs(t) is a linear combination of polynomialsV(t + k). Here is the desired
expression:

Ps(t) = 1

1! · · · (d − 1)!

∑
0≤k≤s

(−1)|k|
(

s1

k1

)
· · ·
(

sd

kd

)
V(t + k). (8)

Let us prove (8). The same argument as in Example 2 above shows that

1

1! · · · (d − 1)!
V(t + k) = det



(t1+ k1

0

)
. . . . . .

(td + kd

0

)
(t1+ k1

1

)
. . . . . .

(td + kd

1

)
...

...(t1+ k1

d − 1

)
. . . . . .

(td + kd

d − 1

)


. (9)

Substituting this expression into (8) and performing the multiple summation, we see that
the right hand side becomes the determinant of thed × d matrix whose(p,q)-entry is

sq∑
kq=0

(−1)kq

(
sq

kq

)(
tq + kq

p− 1

)
= (−1)sq

(
tq

p− 1− sq

)
(the last equality is a standard binomial identity). This completes the proof of (8) and Lemma
3. 2

One last piece of preparation before performing the inductive step: the Pascal binomial
identity (ts) = (t−1

s )+ (t−1
s−1) implies that

1q Ps(t) = −Ps+eq(t − eq) (10)

for any nonnegative integer vectors and anyq = 1, . . . ,d.
To conclude the proof of Theorem 1, suppose thatj < i and assume by induction that

Mj (k) is given by (1) for anyk ∈ Id,n such thatj ≤ k < i. Let sbe the vector given by (2).
In view of (4), the desired equalityMj (i) = Ps(i) is a consequence of the following:

deg(j , i)Ps(i)−
∑

k

Mj (k) = 0, (11)

where the sum is over allk ∈ Id,n such thatj ≤ k < i, and|k| = |i| − 1.
We shall deduce (11) from the equality

d∑
q=1

1q Ps(i) = 0
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provided by Lemma 3. To do this, we compute1q Ps(i) in each of the following mutually
exclusive cases (we use the conventionsi0 = 0 ands0 = d):

Case 1 iq /∈ { j1, . . . , jd}, iq − 1 > iq−1. Thenk := i − eq belongs toId,n, and we have
j ≤ k. Replacingi by k in (2) does not change the vectors. By our inductive assumption,
Ps(k) = Mj (k), and so1q Ps(i) = Ps(i)− Mj (k).

Case 2 iq /∈ { j1, . . . , jd}, iq − 1 = iq−1. For suchq, we havePs(i − eq) = 0 since the
corresponding determinant has the(q − 1)th andqth columns equal to each other. Thus
1q Ps(i) = Ps(i).

Case 3 iq ∈ { jq+1, . . . , jd}, iq − 1> iq−1. As in Case 1, we havek := i − eq ∈ Id,n, and
j ≤ k. However now replacingi by k in (2) changess to s+ eq. Combining the inductive
assumption with (10), we conclude that1q Ps(i) = −Ps+eq(k) = −Mj (k).

Case 4 iq ∈ { jq+1, . . . , jd}, iq − 1 = iq−1. In this case, thed × d matrix whose de-
terminant isPs+eq(i − eq) has the(q − 1)th andqth columns equal to each other, hence
1q Ps(i) = −Ps+eq(k) = 0.

Case 5 iq = jq. Then we have

s1 ≥ s2 ≥ · · · ≥ sq−1 ≥ sq + 1= d + 1− q,

and so thed × d matrix whose determinant isPs+eq(i − eq) has a zero(d + 1− q) × q
submatrix. As in Case 4, this implies1q Ps(i) = −Ps+eq(k) = 0.

Adding up the contributions1q Ps(i) from all these cases, we obtain (11); this completes
the proof of Theorem 1.

Remark 4 In [5], the multiplicity Mj (i) was expressed as a multiple sum given by (8).

Remark 5 The multiplicity Mj (i) is by definition a positive integer. The partial difference
equation (4) (combined with the initial conditionMj ( j) = 1) makes the positivity ofMj (i)
obvious but the fact thatMj (i) is an integer becomes rather mysterious. On the other hand,
Theorem 1 makes it clear thatMj (i) is an integer but not thatMj (i)>0. It would be
interesting to find an expression forMj (i) that makes obvious both properties.

Remark 6 The space of all polynomial solutions of the partial difference equation (7)
can be described as follows. Lety = (y1, . . . , yd) be an auxiliary set of variables, and let
ϕ :Q[y] → Q[t] be the isomorphism of vectors spaces that sends each monomial

∏d
q=1 y

nq
q

to
∏d

q=1 tq(tq+1) · · · (tq+nq−1). The mapϕ intertwines each1q with the partial derivative
∂
∂yq

. It follows that the space of solutions of (7) is the image underϕ of theQ-subalgebra in
Q[y] generated by all differencesyp − yq.
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Remark 7 In the special case whenj = (1, 2, . . . ,d), the following determinantal
formula for the multiplicityMj (i) was given in [3]. Letλ be the partition(i d − d, . . . , i2−
2, i1 − 1), and letλ = (α1, . . . , αr |β1, . . . , βr ) be the Frobenius notation ofλ (see [4]).
According to [3],Mj (i) is equal to the determinant of ther × r matrix whose(p,q) -entry
is (αp+βq

αp
). It is not immediately clear why this determinantal expression agrees with the one

given by (1).

Acknowledgments

We are grateful to V. Lakshmibai who initiated this project by suggesting to one of us (J. R.)
to publish the results of his thesis [5]. We thank Sergey Fomin, Ira Gessel and Jerzy Weyman
for helpful conversations.
Added in proof: the questions raised in Remarks 5 and 7 have been resolved by C. Krattenthaler
in his preprint “On multiplicities of points on Schubert varieties in Grassmannians,” arXiv:
math. AG/0011129, November, 2000.

References

1. I. Gessel and G.X. Viennot, “Binomial determinants, paths, and hooklength formulae,”Adv. Math.58 (1985),
300–321.

2. V. Lakshmibai, “Multiplicities of points on a Schubert variety,”C. R. Acad. Sci. Paris Śer. I Math. 321(2),
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