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Abstract. We obtain an explicit determinantal formula for the multiplicity of any point on a classical Schubert
variety.
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1. Main result

An important invariant of a singular point on an algebraic vardétis its multiplicity: the
normalized leading coefficient of the Hilbert polynomial of the local ring. The main result
of the present note is an explicit determinantal formula for the multiplicities of points on
Schubert varieties in Grassmannians. This is a simplification of a formula obtained in [5].
More recently, the recurrence relations for multiplicities of points on more general (partial)
flag varieties were obtained in [2, 3]. However, to the best of our knowledge the case of
Grassmannians remains the only case for which an explicit formula for multiplicities is
available.

Fix positive integersl andn with 0 < d < n, and consider the Grassmannfan; (V) of
d-dimensional subspaces imadimensional vector spadé (over an algebraically closed
field of arbitrary characteristic). Recall that Schubert varieti€3rig(V) are parameterized
by the setly , of integer vectors = (i1, ...,ig) suchthat 1< i; < --- <ig < n. Fora
given complete flag0} = Vo € V1 C --- C V, = V, the Schubert variet¥; is defined as
follows:

X; = {w = Grd(V)‘dim(WﬂVik) > kfork =1, d}
The Schubert celK? is an open subset iX; given by

X0 = {we X dim(W ()i, 1) =k-1fork=1....d}.
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It is well known that the Schubert varied¥; is the disjoint union of Schubert celb§° for
allj <iin the componentwise partial order dg,. The multiplicity of a pointx in X; is
constant on each Schubert cxﬁ C Xi, and we denote this multiplicity bi; (i).

Our main result is the following explicit formula fdwi; (i) (where the binomial coeffi-
cients({) are subject to the condition the}) = 0 forb < 0):

Theorem 1 The multiplicity M(i) of a point xe XJ-0 C X is given by

() (%)

i1 Id
Mj(Q) = (~D%* S det (1f51> (1—_%) (1)

) e ()

where

Sy i=#Hiplig < jp} (2)

The proof of Theorem 1 will be given in the next section. Although determinants of
matrices formed by binomial coefficients were extensively studied by combinatorialists
(see, e.g., [1]), the experts whom we consulted did not recognize the determinant in (1).

We conclude this section by an example illustrating Theorem 1.

Example 2 Assume the indices| satisfyjq < i1. Inthis situationthe numbess, ..., 5
attain the smallest possible valig:= --- = 54 = 0. Then the(p, q)-entry of the deter-
minant in (1) has the fornP,(iq), wherePy(t) is a polynomial with the leading term
tP~1/(p — 1)!. It follows that

. 1 . 1 . .
M; () = mv(l) = m g]('p —lg), (3

whereV (i) is the Vandermonde determinant dﬁ?‘l)).

2. Proof of Theorem 1

Fix two vectorg < i from I4 , and let
deqj,i) :=d —#iq | iqg € {j1. ..., Ja}}-

For a nonnegative integer vec®e (s, ..., ), we set

Is| i=s1 4+ + .
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As shown in [5] and [3, page 202], the multiplicityl; (i) satisfies the initial condition
M;(j) = 1 and the partial difference equation

1
Mj() = ——— > Mj(K), 4
"7 degj, ) Xk: : )
where the sum is over &l € |4, such thaj <k < i, and|k| = |i| — 1.

To prove (1), we proceed by induction ¢in The initial step is to verify (1) for = j.
In this case the numbess, ..., sy attain their maximum possible valug; = d — q. It
follows that

o ... 0 1
1 * .
(—1)det o =1=M(), (5)
o - . :
1 x ce. %
as required.

For the inductive step, we introduce some notation. To any nonnegative integer vector
S= (s, ..., S) We associate a polynomi&(t) € Q[t] = Q[ty, ..., tq] defined by

(%) (s
ty tq
Py() = (—1)'¥ def & - 51) e - Sd) ; (©)
_(d_tll_sl) (d_tld_sd)_

here(}) is the polynomiat (t — 1) - - - (t —s+ 1)/s! for s > 0, and(}) = 0 fors < 0. Thus
our goal is to show thatl (i) = Ps(i) with sgiven by (2).

Forqg=1,...,d,letAq : Q[t] — Q[t] denote the partial difference operatg P (t) =
P(t) — P(t — ey), wheree,, . .., g4 are the unit vectors iR. Here is the key lemma.

Lemma 3 For any nonnegative integer vectsr the corresponding polynomialsR®)
satisfies the partial difference equation

(A1+---+Ag9P =0. )
Proof: First notice that the Vandermonde determin¥t) = ]_[p>q(tp — tg) satisfies

(7) since it is a non-zero skew-symmetric polynomial of minimal possible degree, and the
operatorA; + - - - + Aq4 preserves the space of skew-symmetric polynomials. The vector
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space of solutions of (7) is also invariant under translations t + k so it is enough to
show that eacliPy(t) is a linear combination of polynomialé(t + k). Here is the desired
expression:

_q)kl S
Py(t) = (d o DD () (kd)va+k>. ®

O<k=<s

Let us prove (8). The same argument as in Example 2 above shows that

'&;ﬂ L @;%'

t1 + k ty + Kqg
mwwk):det(lll) ( 1 ) 9)

. k . kd

_(t(f_ll) (tjjfl)_

Substituting this expression into (8) and performing the multiple summation, we see that
the right hand side becomes the determinant ofitlxed matrix whose(p, q)-entry is

S (@) e, b )

(the last equality is a standard binomial identity). This completes the proof of (8) and Lemma
3. O

One last piece of preparation before performing the inductive step: the Pascal binomial
identity () = (‘31 + ({1 implies that

AqPs(t) = —Psye (t — &) (10)

for any nonnegative integer vecteand anyg =1, .. ., d.

To conclude the proof of Theorem 1, suppose thati and assume by induction that
M; (k) is given by (1) for ank € lq, suchthaj < k < i. Letsbe the vector given by (2).
In view of (4), the desired equalityl; (i) = Ps(i) is a consequence of the following:

degj, HPs@) — Y M;(k) =0, (11)
k

where the sum is over atl € 14, such thaj <k < i, and|k| = |i| — 1.
We shall deduce (11) from the equality

d
> AgPs(i)=0
g=1
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provided by Lemma 3. To do this, we computg Ps(i) in each of the following mutually
exclusive cases (we use the conventigns 0 andsy = d):

Casel iq ¢ {j1,..., jd}ig — 1> ig-1. Thenk := i — g, belongs toly n, and we have
j < k. Replacing by k in (2) does not change the vec®mBy our inductive assumption,
Ps(k) = Mj(k), and soAq Ps(i) = Ps(i) — M;(k).

Case 2 iq ¢ {j1,..., jd}, iq — 1 = ig—1. For suchg, we havePs(i — g;) = 0 since the
corresponding determinant has tfte— 1)th andqth columns equal to each other. Thus
Aq Ps(i) = Ps(i)-

Case 3 ig € {jg+1,-..» Jdhiqg—1>ig-1. Asin Case 1, we have:=i —¢eq € lgn, and
j < k. However now replacingby k in (2) changesto s + g;. Combining the inductive
assumption with (10), we conclude thag Ps(i) = —Ps.¢, (k) = —M; (k).

Case 4 igq € {jg+1,---» Ja}, ig = 1 = ig_1. In this case, th&l x d matrix whose de-
terminant isPs,¢, (i — &) has the(q — 1)th andqth columns equal to each other, hence
Aq Ps(i) = _Ps+eq(k) =0

Case 5 ig = jg. Then we have
S>> =212 +l=d+1-q,

and so thed x d matrix whose determinant Bs, ¢, (i — &) has a zerqd +1—-q) x q
submatrix. As in Case 4, this implies; Ps(i) = —Ps;¢,(k) =0

Adding up the contributiona Ps(i) from all these cases, we obtain (11); this completes
the proof of Theorem 1.

Remark 4 In [5], the multiplicity M; (i) was expressed as a multiple sum given by (8).

Remark 5 The multiplicity M; (i) is by definition a positive integer. The partial difference
equation (4) (combined with the initial conditidw; (j) = 1) makes the positivity ol; (i)
obvious but the fact thal; (i) is an integer becomes rather mysterious. On the other hand,
Theorem 1 makes it clear thad; (i) is an integer but not thai;(i) > 0. It would be
interesting to find an expression fdf; (i) that makes obvious both properties.

Remark 6 The space of all polynomial solutions of the partial difference equation (7)

can be described as follows. Let= (i, ..., Yq) be an auxiliary set of variables, and let

¢ : Q[y] — Q[t] be the isomorphism of vectors spaces that sends each morﬂﬁ;igh/gq

to ]'[g 1fq(tg+1) - - - (tg+ng—1). The magy intertwines eaclh, with the partial derivative
=2 |t follows that the space of solutions of (7) is the image unrdef the Q-subalgebra in

Q[y] generated by all differenceg, — yq.
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Remark 7 In the special case whep=(1,2,...,d), the following determinantal
formula for the multiplicityM; (i) was given in [3]. Let. be the partition(iy —d, ..., i, —

2,i1 — 1), and leth = (@1, ..., | B1, ..., Br) be the Frobenius notation af(see [4]).
According to [3], M (i) is equal to the determinant of thex r matrix whose(p, q) -entry

is (%Ofpﬂq). Itis notimmediately clear why this determinantal expression agrees with the one

given by (1).
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in his preprint “On multiplicities of points on Schubert varieties in Grassmannians,” arXiv:
math. AG/0011129, November, 2000.

References

1. I. Gessel and G.X. Viennot, “Binomial determinants, paths, and hooklength formAithe Math.58 (1985),
300-321.

2. V. Lakshmibai, “Multiplicities of points on a Schubert varietf;’ R. Acad. Sci. Parisé& | Math. 321(2),
(1995), 215-218.

3. V. Lakshmibai and J. Weyman, “Multiplicities of points on a Schubert variety in a minu&y¢ Adv. Math.
84(1990), 179-208.

4. 1.G. MacdonaldSymmetric Functions and Hall Polynomials)d edition, Clarendon Press, Oxford, 1995.

5. J. Rosenthal, “Schubertvaig¢h und deren Singulaai&n,” Diplom Thesis, University of Basel, Switzerland,
1986.



