ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Explicit Formulae for Some Kazhdan-Lusztig Polynomials

Francesco Brenti and Rodica Simion
dagger

DOI: 10.1023/A:1008741113381

Abstract

We consider the Kazhdan-Lusztig polynomials P u,v (q) indexed by permutations u, v having particular forms with regard to their monotonicity patterns. The main results are the following. First we obtain a simplified recurrence relation satisfied by P u,v (q) when the maximum value of v isin S n occurs in position n - 2 or n - 1. As a corollary we obtain the explicit expression for P e,3 4 ... n 1 2(q) (where e denotes the identity permutation), as a q-analogue of the Fibonacci number. This establishes a conjecture due to M. Haiman. Second, we obtain an explicit expression for P e, 3 4 ... ( n - 2) n ( n - 1) 1 2(q). Our proofs rely on the recurrence relation satisfied by the Kazhdan-Lusztig polynomials when the indexing permutations are of the form under consideration, and on the fact that these classes of permutations lend themselves to the use of induction. We present several conjectures regarding the expression for P u,v (q) under hypotheses similar to those of the main results.

Pages: 187–196

Keywords: Kazhdan-Lusztig polynomial; q-Fibonacci number; Bruhat order

Full Text: PDF

References

1. F. Brenti, “A combinatorial formula for Kazhdan-Lusztig polynomials,” Invent. Math. 118 (1994), 371-394.
2. F. Brenti, “Combinatorial properties of the Kazhdan-Lusztig R-polynomials for Sn,” Advances in Math. 126 (1997), 21-51.
3. F. Brenti, “Kazhdan-Lusztig and R-polynomials from a combinatorial point of view,” Discrete Math. 193 (1998), 93-116.
4. F. Brenti, “Lattice paths and Kazhdan-Lusztig polynomials,” J. Amer. Math. Soc. 11 (1998), 229-259.
5. V.V. Deodhar, “A combinatorial setting for questions in Kazhdan-Lusztig theory,” Geom. Dedicata 36 (1990), 95-119.
6. C. Ehresmann, “Sur la topologie de certains espaces homog`enes,” Ann. Math. 35 (1934), 396-443.
7. J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge,
1990. Cambridge Studies in Advanced Mathematics, No. 29.
8. D. Kazhdan and G. Lusztig, “Representations of Coxeter groups and Hecke algebras,” Invent. Math. 53 (1979), 165-184.
9. A. Lascoux, “Polyn\hat omes de Kazhdan-Lusztig pour les variétés de Schubert vexillaires,” C. R. Acad. Sci. Paris, Ser. I, Math. 321 (1995), 667-670.
10. A. Lascoux and M.-P. Sch\ddot utzenberger, “Polyn\hat omes de Kazhdan & Lusztig pour les grassmanniennes, Young tableaux and Schur functions in algebra and geometry,” Astérisque 87/88 (1981), 249-266.
11. I.G. Macdonald, Notes on Schubert Polynomials, Publ. LACIM, UQAM, Montreal, 1991.
12. B. Shapiro, M. Shapiro, and A. Vainshtein, “Kazhdan-Lusztig polynomials for certain varieties of incomplete flags,” Discrete Math. 180 (1998), 345-355.
13. R.P. Stanley, Enumerative Combinatorics , Vol. 1, Wadsworth and Brooks/Cole, Monterey, CA, 1986; second printing, Cambridge University Press, Cambridge/New York, 1997.
14. A. Zelevinski, “Small resolutions of singularities of Schubert varieties,” Funct. Anal. Appl. 17 (1983), 142- 144.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition