';:‘ Journal of Algebraic Combinatoridsl (2000), 187-196

(© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Explicit Formulae
for Some Kazhdan-Lusztig Polynomials

FRANCESCO BRENT! brenti@mat.uniroma2.it
Dipartimento di Matematica, Univergitdi Roma “Tor Vergata”, Via della Ricerca Scientifica,
1, 1-00133 Roma, ltaly

RODICA SIMION* simion@gwu.edu
Department of Mathematics, The George Washington University, Washington, DC 20052, U.S.A.

Received February 23, 1998; Revised March 9, 1999; Accepted April 1, 1999

Abstract. We consider the Kazhdan-Lusztig polynomiBls, (q) indexed by permutations v having particular

forms with regard to their monotonicity patterns. The main results are the following. First we obtain a simplified
recurrence relation satisfied B, (q) when the maximum value af € S, occurs in positiom — 2 orn — 1.

As a corollary we obtain the explicit expression f&s34..n12(q) (Wwheree denotes the identity permutation),

as ag-analogue of the Fibonacci number. This establishes a conjecture due to M. Haiman. Second, we obtain
an explicit expression foPe34... (n—2) n (n—1) 1 2(q). Our proofs rely on the recurrence relation satisfied by the
Kazhdan-Lusztig polynomials when the indexing permutations are of the form under consideration, and on the
fact that these classes of permutations lend themselves to the use of induction. We present several conjectures
regarding the expression f&; , (q) under hypotheses similar to those of the main results.
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1. Introduction

In their seminal 1979 paper [8], D. Kazhdan and G. Lusztig introduced a family of poly-
nomials, P, ,(q), indexed by pairs of elements v of a Coxeter group. In the case when

u andv are permutations, the polynomials have become known aKakzbdan-Lusztig
polynomials for the symmetric grouThe interest in these polynomials and the broader
circle of ideas of Kazhdan-Lusztig Theory to which they belong, is multifold. From the
beginning of their study, the Kazhdan-Lusztig polynomials were shown to be related to Lie
theory, and a significant body of literature treats their relation to the geometry of Schubert
varieties, representation theory, and the (strong) Bruhat order of the symmetric group. The
latter and a variety of properties of and conjectures concerning the Kazhdan-Lusztig poly-
nomials make them interesting and challenging objects of study from the point of view of
combinatorics. Developments along these lines include combinatorial derivations for the
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Kazhdan-Lusztig polynomials (see, e.g., the accountin [7], section 7.12, [1, 4, 5]) as well as
explicit formulas for Kazhdan-Lusztig polynomials for particular classes of permutations
(see, e.g., [9, 10, 12, 14]).

The present paper contributes results in the direction of explicit formulae for the Kazhdan-
Lusztig polynomials of the symmetric group when the indexing permutations are of par-
ticular forms. The main results, appearing in Section 3, are as follows. First we obtain a
simplified recurrence relation satisfied By, (q) for u, v € S, when the maximum value
of v occursin positiom—2 orn—1 (Theorem 3.1). Asacorollary (Corollary 3.2), we obtain
the explicit expression foPe 3 4. n12(Q) (Wheree denotes the identity permutation), as a
g-analogue of the Fibonacci number. This establishes a conjecture due to M. Haiman (see
[3, Conjecture 7.18]). Second, we obtain an explicit expressioRdes .. (n—2) n (n—1) 1 2(Q)
(Theorem 3.3). Our proofs rely on the recurrence relation satisfied by the Kazhdan-Lusztig
polynomials when the indexing permutations are of the form under consideration, and on
the fact that these classes of permutations lend themselves to the use of induction. Section 4
presents several conjectures regarding the expressidh f@g) under hypotheses similar
to those of the main results.

As a starting point, in the next section we fix the notation and provide the necessary
preliminaries concerning the Bruhat order. We also include a subset of facts about the
Kazhdan-Lusztig polynomials which are used in proving the results of this paper.

2. Definitions, notation, and preliminaries

In this section we collect some definitions, notation and results that will be used in the rest
of this paper. We leP def {1,2,3,...}, N d:'af PU {0}, andZ be the set of integers, ai
be the field of real numbers; fare N we let [a] ot {1,2,...,a} (where [O]d=Ef @). Given
n,me P,n<m,weletn, m def [m]\[n — 1]. We writeS= {ay, ..., & }. to mean that
S={a,...,a}anda < --- < a. The cardinality of a sef will be denoted by A|.
Given a polynomiaP(q) andi € N, we will denote by §']1(P(q)) the coefficient ofy in
P(q). Givena € R, we denote by a| the largest integex a.

Given a sefl we let S(T) be the set of all bijections : T — T. In particular,S, def
S([n)]) is the symmetric group on elements. We denote lg/the identity of S,. If T =
{ts,...,tt}- € Pando € S(T), then we writec = o1 -0, to mean that (tj)) = o,
fori =1,...,r. If 0 € S then we also writer in disjoint cycle form(see, e.g., [13],
p. 17) and we will usually omit the 1-cycles 6f For exampleg = 365492187 S can
be written alternatively as = (9, 7, 1, 3,5)(2, 6). Giveno, t € S, we letot e ot
(composition of functions) so that, for examplg, 2)(2, 3) = (1, 2, 3). Giveno € S,, the
descent set of is

D) E'i e[n—1]:06) > o + D)},

thenumber of descents ofis

d(o) =|D(o)l,
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Figure L The Bruhat order o1Ss.

and thdength ofs is defined by the number of inversions:
1) Einvie) & (@@, b) e [n] x [n]:a < b, o (@) > a(B)}].

For example, it = 615243 therD (o) = {1, 3,5} andl (¢) = 9.

Throughout this paper we vieW, as a partially ordered set ordered by the (strong)
Bruhat order Recall (see, e.g., [11], Chapter 1) that this meansdhat ¢ if and only
if there existreN and a;, by,...,a,b €[n] such that (a,b)--- (a1, b)o=1
andl((g,bi)---(ar,b))o) > I((a_1,bi_1)---(az, by)o) for eachi = 1,...,r. For
example, the Hasse diagram of the Bruhat orde®pis shown in figure 1.

The following characterization of the Bruhat orderSfis due to Ehresmann [6], and
will be used often in this work. We refer the reader to, e.g., [11], Chapter 1, for a proof.
Foro € §,, andj € [n], let

def

{oh oS o), ...,a())). @
Theorem 2.1 Leto, 7 € S. Theno < tifandonly ifol! < ¢l forall1<i < j <
n-1

Forexample, it = 4123 and = 2431theno??t, 021,022, ...,0%%) = (4,1,4,1,2,4)
and(ttt, 121 22, 138 = (2,2,4,2, 3,4) and hencer andt are incomparable in
Bruhat order.

The following resultis fundamental in the theory of Kazhdan and Lusztig and is presented,
e.g., in[7], 87.11, Eq. (23). Here it will serve as the definition ofklaghdan-Lusztig poly-
nomials R, (q) of ;. Itis interesting to note that no combinatorial proof of Theorem 2.2
is known.

Theorem 2.2 There exists a unique family of polynomi@R,; ,(qQ)}u.ves, < Z[q] such
that

i) Puo(@ =0ifu £ v;
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i) P,(q) =1ifu=u;
i) ifu<wvandie D(v)then

Puv(@) = 9 Puitn.vhi+n (@) + A°Pui+n (@)
— Y QT @ v+ 1)Pu(@)

{z:ieD(2)}

whereforuw € S,

o, w) & [q30@-1@-D](p, @), ifu < w,
, 0, otherwise

c=1ifi € D(u), and c= 0 otherwise.

Two well-known simple but important consequences of Theorem 2.2 are the following
(see, e.g., [7, Theorem 7.9, part (b), and Corollary 7.14]).

Proposition 2.3 Letu, v € §, such that u< v. Then degPR, ,(q)) < %(I(v) —1l(u) —1).
Proposition 2.4 Letu, v € §, such that u< v. Ifi € D(v), then
Puv(@) = Pug.i+1).0(Q)-
So, forexampleP214756361572440) = P124573661572440), and
Punn-1.321(Q) =1, (2)
forall u € S,. Thus Proposition 2.4 shows that it is enough to compute Kazhdan-Lusztig
polynomialsP, ,(q) for pairsu, v € §, such thatD(v) € D(u) (say).

The following result is an immediate consequence of Propositions 2.3 and 2.4.

Proposition 2.5 Letz w € &, Z < w, be such thaju(z, w) # 0and l(w) — 1(2) > 1.
Then Oz) © D(w).

The preceding proposition motivates the following definition. foe S, andi € [n]
we let

Ew,i) E{zeS:z<w, D@ 2 Dw) Ui}, l(w) -1z > 1)
U{ze S :z<w, D@2 >i}, 3)

where the notatioz < w means that is covered by, thatis,z < wandifz <t < w
thenz=tort = w.
Then by Proposition 2.5 we deduce from Theorem 2.2 the following result.
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Corollary 2.6 Letu,ve S,u=<v,andie D(v). Then

Puo (@ = 9 Pygii+1),06,i+2 (@) + 9°Puui.itn (@)
— Y u@oli +1)g @R, (),

2eE(u(i,i+1).i)

where c= 1ifi € D(u), and c= 0 otherwise.

Two other properties of the Kazhdan-Lusztig polynomials that we will use are the
following.

Proposition 2.7 Letu,v € S,. Then
Puv (@) = Py1,-1(0) = Prri—um)..n+1—-u@),n+1-vm)..n+1—v(@) (@) - (4)

The final result of this section will be applied repeatedly in the sequel, in a special case:
if u < v are permutations ifg, andn occurs in the same position in bathand v, then
Pu»(@) = Py.»(d), whereu’, v are obtained fronu, v, respectively, by suppressing the
valuen.

Leto € §,,andi, j € [n],i < j. We define theestrictionof o to [i, j] to be the unique
permutatioroy; j; € S([i, j]) such that

o Hop, M) < o Hop, i +D) < -+ <o op,j3(D))-
For example, il = 7251634 thews 5; = 534 (i.€,0(35/(3) = 5, 013.5/(4) = 3, 0[3,5/(5)
= 4). Note thatoy; j; is the identity permutation ir8([i, j]) if and only if o ~%(i) <
oM i+ < <o i)).

Theorem 2.8 Letu, v € S, u < v. Suppose that there existi[n] such that a*([i]) =
v~ I([i]). Then

Pu,v (Q) = Pu[i].v[i] (Q) PU[i+1,n],U[i+1,n] (Q) (5)

Proofs of the equalities in (4) and (5) appear in [1, Corollaries 4.3 and 4.4], and in [2,
Theorem 4.4], respectively.

3. Main results

Theorem 3.1 Letu,v e S, u < v, be such thab=*(n) € {(n — 2, n — 1}. Then

A Pugii+ 0.6+ (@) + A% Py i+ (@) ifi +1¢ D(v),
Puo(@ = 3 0¥ Pugii+1),06,i+1 (@) + 9° Py i+ (@) — o Py vmnn—2.n-1(d),
ifi +1¢e D(v),

where id:efv—l(n), c®1ifi e D(u), and c®'0 otherwise.
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Proof: Leti = v~%(n). Theni e D(v) and Corollary 2.6 yields

Puo(@) = Pyt +1 (@) + APy uii+n (@)
~ > uz v, i +1)gi @ P, (), (6)

zeE

wherec = 1if i € D(u) andc = 0 otherwise, andE = E(v(i,i + 1),i) as defined in 3.
In particular,z € E satisfiesz < v(i,i + 1) andz(i) > z(i + 1).

Suppose first that = n — 2. Thenz < v(h — 2,n — 1) and Theorem 2.1 imply
z71(n) € {n — 1, n}. Together withz(i) > z(i + 1), this forcesz~1(n) = n and therefore
thatn — 1 ¢ D(z). Butn—1 € D(v(n — 2,n — 1)), so Proposition 2.5 implies that
wiz,vn-2,n—-1) =0ifl(v(h—-2,n—-1) —I(2 > 1, and we can restrict our
attention toz € E such thaz <v(n — 2, n — 1). Sincez"1(n) = n, the only candidate for
z<gv(n — 2,n — 1) which belongs tE is z = v(n,n — 2, n — 1). This is indeed irE if
and only ifn — 1 € D(v). Therefore

Z,U«(Z, vin—2,n— 1))q%('(”)_'(z)) Pu,z(a)

zeE

{O, ifn—1¢ D(v),
g Rivnn-2n-1(@), ifn—1e D(v),
and the desired result follows.

Suppose now that = n — 1. As before,z < v(n — 1,n) and Theorem 2.1 imply
z~1(n) = n, butnowwe have = n—1 ¢ D(2). ThereforeE = @. Also,i+1=n ¢ D(v),
by the definition of the descent set. So the result again follows. m|

Forn e P consider thej-analoguer,(q) of the Fibonacci numbef, defined by

Fa(@) €' Fo_1(@) + 0 Faa(@).
whereF,(q) €0ifn <0 andFo(Q) %71, Itis an easy exercise to verify that for> 0,
n/2] n—i\ .
Fo@ = ) ( i )q'.
i=0
Corollary 3.2 Letn> 3. Then
F)e,?: 4.n1 Z(Q) = anz(Q)-

Proof: We proceed by induction om > 3, the result being easily verified for= 3, 4.
From Theorem 3.1 (the instance=n — 2,c = 0,i + 1 ¢ D(v)) we obtain that

Pe3a.n12(d) = dPn—2n-1,34.n-11n2(Q) + Pe3a.n-11n2(0).
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By applying Proposition 2.4 (in turn, with=n — 3 andi = n — 1), then Theorem 2.8 (in
turn, withi = n — 1, and withi = n — 2), and then the induction hypothesis, we have

P(n—z,nfl),S 4.n-11n Z(Q) = l:)1 2.n—-4n-1n-3nn-234.n-11n Z(q)
= Pr2.n-3n-234.n-212(Q)
= Fn—A(Q)’

and similarly

Pe,3 4.n-11n Z(Q) = Pl 2.n—-2nn-1,34.n-11n Z(q)

Pi2 n—2n-134.n-112(Q)
Fr—3(Q)

and the result follows. O

So, for exampleP1234s6734567140) = 1 + 49 + 3g°. Corollary 3.2, by Proposition 2.7,
verifies a conjecture of M. Haiman ([3, Conjecture 7.18]).

It should be noted that the reasonings made to prove the last two results actually prove
that

C34.0n12=C223Ci4 - - Cn-1nC1.2C23 - - Cn-2.n-1

in the Hecke algebra{ of S,, whereC, denotes the Kazhdan-Lusztig elementotor-
responding ta € S, (see [7], Chap. 7, for the definitions, and further information about,
these objects). This, in theory, should allow one to compute explicitly the Kazhdan-Lusztig
polynomialsP, 34 n12 for all o € S,. However, we have ben unable to carry this out
because of the complicated nature of multiplication in the Hecke aldgbra

There are other pairs of permutations whose Kazhdan-Lusztig polynomials can be com-
puted in a similar way.

Theorem 3.3 Letn=> 5. Then

Pe3a.n—2nn-112(0) = Fn_3(Q).

Proof: By Corollary 2.6 withi = n — 2, we have

Pe3s.n—2nn-112(Q)
=d l:)(n72,n71),3 4.n-2n1n-1 Z(Q) + F>e,3 4.n-2n1ln-1 Z(q)
3 O @p(z,34...n—2n1n—12Pe,(Q). @)

zeE

whereE = E(34...n—2n1n-12 n-—2). We claim thatE consists of only one
permutation. To verify this claim, suppoges E. Thus,z<34...n—-2n1n-12.
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fl(zg <134..n—2n1n-1 2 — 1 then the condition on descents requires
z(n—3) > z(n —2) > z(h — 1) > z(n). But together with Theorem 2.1, which implies
z~1(n) > n— 3, this forcez~1(n) = n — 3. Now, from Theorem 2.1 we obtain further that
z1(n — 1) > n — 1 which contradicts the condition on descentsZoTherefore ifz € E,
thenz<34...n—2n1ln—-12. Butthernzisobtainedfrom34..n—2n1 n—-12

by transposing two elements and, since we nged- 2) > z(n — 1), we conclude that
z=34...n—21nn-12. ThusE is a singleton set as claimed and Eq. (7) can be
rewritten explicitly as

Pe3a.n—2nn-112(0) = qPn—2n-1),34.n—2n1n-12(Q)
+ Pezsa.n—2nin-12(0) —d Peza.n21nn-12(0). (8)

We now examine each of the terms on the right-hand-side of (8). Consider the Kazhdan-
Lusztig polynomial from the first termPn_2n-1)34.n—2n1n-12(d), and apply to it
Corollary 2.6 withi = n — 3. For simplicity of notation, let novE":=E@3 4...n — 2
1nn—-12 n-3). We show thatt’ = . Suppose to the contrary thate E'. If
l(2) <1@B34..n—-21nn-12—-1thenzh—-4) > --- > zn—-1) > z(n)
which implies thatz~1(n) < n — 4 and this, by Theorem 2.1, contradicts the fact that
z<34..n-21nn-12.1fz<34...n—-21nn-12thenz(n—3) > z(h—2) and
this is again a contradiction. Therefdeé = ¢ and Corollary 2.6 with = n — 3 yields

I:)(n—Z,nfl),S 4.n-2nln-1 Z(Q) =q Pl...n74 n-1n-3n-2n,34..n-21nn-1 Z(q)
+ Pin—2n-1).34..n—2 1n n-12(0). 9

Now note that by Theorem 2.2, the first term on the right-hand-side of (9) is null, since
(using, e.g., Theorem2.1).1.n—4n—-1n—-3n—-2n#£34...n—21nn—-12.1In
turn, the second term on the right-hand-side of (9) can be evaluated explicitly:

Pin-2n-1,34.n-21nn-12(0) = PL.n—3nn-1n-234.n-21nn-12(Q)
= PL.n-3n-234.n-212(0)
Fr_4(Q). (10)

In (10), the first equality follows from Proposition 2.4 (applied wits n — 1, andn — 2),

the second one follows from Theorem 2.8 (suppressiagdn — 1), and the third from
Corollary 3.2. Consequently, we have obtained that the first term on the right-hand-side of
Eq. (8) is

g Pn—2n-1.34.n—2n1n-12(0Q) = qF_4(q). (11)
Similarly, sinceE’ = ¢, the second term on the right-hand-side of (8) is

Pe,3 4.n-2nln-1 Z(Q) =q P(n73,n72),3 4.n-21nn-1 Z(q)
+ Pe,3 4.n-21nn-1 Z(Q) (12)
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In (12), the Kazhdan-Lusztig polynomial in the first term of the right-hand-side is

F)(n—3,n72),3 4.n-21nn-1 Z(Q) = l:)1...n74 n-2nn-1n-3,34.n-21nn-1 Z(Q)
= PLn4n—2n-334.n-212(0Q), (13)

by applying Proposition 2.4 and Theorem 2.8 (similarly to the situation in (10)). By
Theorem 3.1,

F)l...n74 n-2n-3,34..n-21 Z(q) =dq I:)1...n75 n-2n-4n-3,34.n-31n-2 Z(Q)
+ P1 n4n—2n-334.n-31n-22(0)). (14)

Sincel..n—-5n-2n—-4n-3 % 34...n—3 1n-2 2, thefirstterm on the right-hand-

side of (14) is null, and by Theorem 2.8, the second termis eqal ¥0.4n-3,3 4.n-31 2(Q)-
Also, this last polynomial is as in Corollary 3.2, so (14) becomes

Pi n—4n—2n-334.n-212(0) = Fn_s(Q). (15)
Combined with Eq. (13) this gives
Pin—3n-2),34.n—21nn-12(0) = Fn_s(Q). (16)

Finally, the second term on the right-hand-side of (12) can be computed similarly to the
calculation in (10), and we obtain

Pe3a.n—21nn-12(0) = PL.n—3nn-1n-234.n-21nn-12(0) = Fr_a(Q). a7

Substituting (16) and (17) into (12) we obtain

Pe3a.n—2n1n-12(0) = g Fa_s(d) + Fn_a(Q) = Fn_3(Q). (18)

Finally, the third term on the right-hand-side of (8) contains the same Kazhdan-Lusztig
polynomial as in (17). By substituting (11), (18), and (17), into the initial Eq. (8) the proof
is completed:

Pe,3 4.n-2nn-11 Z(q) =q Fn74(q) + Fn73(Q) —-q Fn74(q)- (19)
O

4. Conjectures and open problems

In this section we collect a variety of conjectures concerning Kazhdan-Lusztig polynomials
which we have obtained empirically. Although many of the permutations appearing in these
conjectures are quite similar to the ones considered in this note, the resulting Kazhdan-
Lusztig polynomials are rather different, and we have been unable to prove them.
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Conjecture 4.1 Leti € P. Then

Pin—in-2.n-i 23.n-i—tnn-1nn-2.n-i12.n-i-1(@) = 1+ (N —i — 2)
forn>i+ 2.
Conjecture 4.2 Letn > 6. Then

I:>ts,n—2 n-1nn-3.431 2(Q) =1+ an74_

Conjecture 4.3 Letn > 6. Then

Pen—2n-inn-3.42130Q) = 14+29"°+g"*

The above conjectures have been verifiedfer 8. Note that Conjecture 4.1 generalizes
both Conjectures 7.15 and 7.16 of [3].

Note added in proof: Conjecture 4.1 has been proved by P. P&onstruction of
arbitrary Kazhdan-Lusztig polynomials in symmetric groupepresentation Theor
(1999), 90-104.
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