Quasi-Shuffle Products
Michael E. Hoffman
DOI: 10.1023/A:1008791603281
Abstract
Given a locally finite graded set A and a commutative, associative operation on A that adds degrees, we construct a commutative multiplication * on the set of noncommutative polynomials in A which we call a quasi-shuffle product; it can be viewed as a generalization of the shuffle product III. We extend this commutative algebra structure to a Hopf algebra (U, *, ); in the case where A is the set of positive integers and the operation on A is addition, this gives the Hopf algebra of quasi-symmetric functions. If rational coefficients are allowed, the quasi-shuffle product is in fact no more general than the shuffle product; we give an isomorphism exp of the shuffle Hopf algebra (U, III, ) onto (U, *, ) the set L of Lyndon words on A and their images { exp(w) w L} freely generate the algebra (U, *). We also consider the graded dual of (U, *, ). We define a deformation * q of * that coincides with * when q = 1 and is isomorphic to the concatenation product when q is not a root of unity. Finally, we discuss various examples, particularly the algebra of quasi-symmetric functions (dual to the noncommutative symmetric functions) and the algebra of Euler sums.
Pages: 49–68
Keywords: Hopf algebra; shuffle algebra; quasi-symmetric function; noncommutative symmetric function; quantum shuffle product
Full Text: PDF
References
1. D.J. Broadhurst, J.M. Borwein, and D.M. Bradley, “Evaluation of irreducible k-fold Euler/Zagier sums: a compendium of results for arbitrary k,” Electron. J. Combin. 4(2) (1997), R5.
2. D.J. Broadhurst, “Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras at the sixth root of unity,” Eur. Phys. & C. Part Fields 8 (1999), 311-333.
3. E.J. Ditters and A.C.J. Scholtens, “Note on free polynomial generators for the Hopf algebra QSym of quasisymmetric functions,” preprint.
4. G. Duchamp, A. Klyachko, D. Krob, and J.-Y. Thibon, “Noncommutative symmetric functions III: deformations of Cauchy and convolution algebras,” Disc. Math. Theor. Comput. Sci. 1 (1997), 159-216.
5. R. Ehrenborg, “On posets and Hopf algebras,” Adv. Math. 119 (1996), 1-25.
6. F. Fares, “Quelques constructions d'alg`ebres et de coalg`ebres,” Thesis, Université du Québec `a Montréal.
7. I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, and J.-Y. Thibon, “Noncommutative symmetric functions,” Adv. Math. 112 (1995), 218-348.
8. I.M. Gessel, “Multipartite P-partitions and inner products of skew Schur functions,” Combinatorics and Algebra, 34, Contemp. Math., Amer. Math. Soc., Providence, 1984, pp. 289-301.
9. A.B. Goncharov, “Multiple polylogarithms, cyclotomy, and modular complexes,” Math. Res. Lett. 5 (1998), 497-516.
10. J.A. Green, “Quantum groups, Hall algebras and quantized shuffles,” in Finite Reductive Groups (Luminy, 1994), Progr. Math. 141, Birkh\ddot auser Boston, 1997, pp. 273-290.
11. M. Hazewinkel, “The Leibniz-Hopf algebra and Lyndon words,” Centrum voor Wiskunde en Informatica Report AM-R9612, 1996.
12. M.E. Hoffman, “The algebra of multiple harmonic series,” J. Algebra 194 (1997), 477-495.
13. C. Malvenuto and C. Reutenauer, “Duality between quasi-symmetric functions and the Solomon descent algebra,” J. Algebra 177 (1995), 967-982.
14. C. Reutenauer, Free Lie Algebras, Oxford University Press, New York, 1993.
15. M. Rosso, “Groupes quantiques et alg`ebres de battage quantiques,” Comptes Rendus de 1' Acad. Sci. Paris Sér. I 320 (1995), 145-148.
16. A.C.J. Scholtens, “S-typical curves in noncommutative Hopf algebras,” Thesis, Vrije Universiteit, Amsterdam, 1996.
17. M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
18. J.-Y. Thibon and B.-C.-V. Ung, “Quantum quasi-symmetric functions and Hecke algebras,” J. Phys. A: Math. Gen. 29 (1996), 7337-7348.
19. A. Varchenko, “Bilinear form of real configuration of hyperplanes,” Adv. Math. 97 (1993), 110-144.
20. D. Zagier, “Values of zeta functions and their applications,” First European Congress of Mathematics, Paris, 1992, Vol. II, pp. 497-512, Birkh\ddot auser Boston, Boston, 1994.
2. D.J. Broadhurst, “Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras at the sixth root of unity,” Eur. Phys. & C. Part Fields 8 (1999), 311-333.
3. E.J. Ditters and A.C.J. Scholtens, “Note on free polynomial generators for the Hopf algebra QSym of quasisymmetric functions,” preprint.
4. G. Duchamp, A. Klyachko, D. Krob, and J.-Y. Thibon, “Noncommutative symmetric functions III: deformations of Cauchy and convolution algebras,” Disc. Math. Theor. Comput. Sci. 1 (1997), 159-216.
5. R. Ehrenborg, “On posets and Hopf algebras,” Adv. Math. 119 (1996), 1-25.
6. F. Fares, “Quelques constructions d'alg`ebres et de coalg`ebres,” Thesis, Université du Québec `a Montréal.
7. I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, and J.-Y. Thibon, “Noncommutative symmetric functions,” Adv. Math. 112 (1995), 218-348.
8. I.M. Gessel, “Multipartite P-partitions and inner products of skew Schur functions,” Combinatorics and Algebra, 34, Contemp. Math., Amer. Math. Soc., Providence, 1984, pp. 289-301.
9. A.B. Goncharov, “Multiple polylogarithms, cyclotomy, and modular complexes,” Math. Res. Lett. 5 (1998), 497-516.
10. J.A. Green, “Quantum groups, Hall algebras and quantized shuffles,” in Finite Reductive Groups (Luminy, 1994), Progr. Math. 141, Birkh\ddot auser Boston, 1997, pp. 273-290.
11. M. Hazewinkel, “The Leibniz-Hopf algebra and Lyndon words,” Centrum voor Wiskunde en Informatica Report AM-R9612, 1996.
12. M.E. Hoffman, “The algebra of multiple harmonic series,” J. Algebra 194 (1997), 477-495.
13. C. Malvenuto and C. Reutenauer, “Duality between quasi-symmetric functions and the Solomon descent algebra,” J. Algebra 177 (1995), 967-982.
14. C. Reutenauer, Free Lie Algebras, Oxford University Press, New York, 1993.
15. M. Rosso, “Groupes quantiques et alg`ebres de battage quantiques,” Comptes Rendus de 1' Acad. Sci. Paris Sér. I 320 (1995), 145-148.
16. A.C.J. Scholtens, “S-typical curves in noncommutative Hopf algebras,” Thesis, Vrije Universiteit, Amsterdam, 1996.
17. M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
18. J.-Y. Thibon and B.-C.-V. Ung, “Quantum quasi-symmetric functions and Hecke algebras,” J. Phys. A: Math. Gen. 29 (1996), 7337-7348.
19. A. Varchenko, “Bilinear form of real configuration of hyperplanes,” Adv. Math. 97 (1993), 110-144.
20. D. Zagier, “Values of zeta functions and their applications,” First European Congress of Mathematics, Paris, 1992, Vol. II, pp. 497-512, Birkh\ddot auser Boston, Boston, 1994.